Skip to main content
Erschienen in: Thermal Engineering 6/2019

01.06.2019 | HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

A Technique for Scanning Probe Measurement of Temperature Fields in a Liquid Flow

verfasst von: I. A. Belyaev, D. A. Biryukov, N. Yu. Pyatnitskaya, N. G. Razuvanov, E. V. Sviridov, V. G. Sviridov

Erschienen in: Thermal Engineering | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For designing different heat and power equipment with a wide range of applications, it is necessary to measure the fields of thermophysical characteristics (temperature, pressure, velocities, etc.) in as much detail as possible. At the same time, the deployment of complex diagnostic methods is often impossible. Therefore, it is most practical to use movable probes that move in the flow and make measurements at separate points. The use of such scanning measurement methods is a complex task that requires the solution of many mechanical and thermophysical problems. The techniques of scanning probe measurements for determining thermal characteristics in the flows of various media are described. A review is given concerning the development of probe-based investigation methods since the 1960s. Joint probe developments concerning the probes made by the scientific group of the Engineering Thermophysics Department of the National Research University Moscow Power Engineering Institute and the Joint Institute for High Temperatures, Russian Academy of Sciences, for two-dimensional and three-dimensional temperature and velocity measurements in water and mercury flows are presented in detail. The experience in the development and use of scanning probes is summarized in three main designs, such as a hinged probe, a probe with eccentricity, and a longitudinal probe. Descriptions, methods of application, and the features of their operation are considered for these designs. The results obtained by using the probes of various designs in the course of experiments with water and mercury are considered. The choice of a required technique is substantiated depending on the preset conditions of the problem, such as the geometric characteristics of the investigated area, the presence of a magnetic field, the influence of thermal and gravity factors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. R. N. Childs, Practical Temperature Measurement (Elsevier, Jordan Hill, 2001). P. R. N. Childs, Practical Temperature Measurement (Elsevier, Jordan Hill, 2001).
2.
Zurück zum Zitat H. Nakaharai, J. Takeuchi, T. Yokomine, T. Kunugi, S. Satake, N. B. Morley, and M. A. Abdou, “The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid,” Exp. Therm. Fluid Sci. 32, 23–28 (2007).CrossRef H. Nakaharai, J. Takeuchi, T. Yokomine, T. Kunugi, S. Satake, N. B. Morley, and M. A. Abdou, “The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid,” Exp. Therm. Fluid Sci. 32, 23–28 (2007).CrossRef
3.
Zurück zum Zitat R. Khalilov, I. Kolesnichenko, A. Pavlinov, A. Mamykin, A. Shestakov, and P. Frick, “Thermal convection of liquid sodium in inclined cylinders,” Phys. Rev. Fluids 3, 043503 (2018).CrossRef R. Khalilov, I. Kolesnichenko, A. Pavlinov, A. Mamykin, A. Shestakov, and P. Frick, “Thermal convection of liquid sodium in inclined cylinders,” Phys. Rev. Fluids 3, 043503 (2018).CrossRef
4.
Zurück zum Zitat I. V. Kolesnichenko, A. D. Mamykin, A. M. Pavlinov, V. V. Pakholkov, S. A. Rogozhkin, P. G. Frick, and S. F. Shepelev, “Experimental study on free convection of sodium in a long cylinder,” Therm. Eng. 62, 414–422 (2015).CrossRef I. V. Kolesnichenko, A. D. Mamykin, A. M. Pavlinov, V. V. Pakholkov, S. A. Rogozhkin, P. G. Frick, and S. F. Shepelev, “Experimental study on free convection of sodium in a long cylinder,” Therm. Eng. 62, 414–422 (2015).CrossRef
5.
Zurück zum Zitat U. Burr, L. Barleon, U. Müller, and A. Tsinober, “Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets,” J. Fluid Mech. 406, 247–279 (2000).CrossRefMATH U. Burr, L. Barleon, U. Müller, and A. Tsinober, “Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets,” J. Fluid Mech. 406, 247–279 (2000).CrossRefMATH
6.
Zurück zum Zitat U. Burr, L. Barleon, P. Jochmann, and A. Tsinober, “Magnetohydrodynamic convection in a vertical slot with horizontal magnetic field,” J. Fluid Mech. 475, 21–40 (2003).MathSciNetCrossRefMATH U. Burr, L. Barleon, P. Jochmann, and A. Tsinober, “Magnetohydrodynamic convection in a vertical slot with horizontal magnetic field,” J. Fluid Mech. 475, 21–40 (2003).MathSciNetCrossRefMATH
7.
Zurück zum Zitat L. G. Genin, V. G. Zhilin, and B. S. Petukhov, “Experimental study of turbulent mercury flow in a circular pipe in a longitudinal magnetic field,” Teplofiz. Vys. Temp. 5, 302–307 (1967). L. G. Genin, V. G. Zhilin, and B. S. Petukhov, “Experimental study of turbulent mercury flow in a circular pipe in a longitudinal magnetic field,” Teplofiz. Vys. Temp. 5, 302–307 (1967).
8.
Zurück zum Zitat L. G. Genin, V. V. Boronko, T. E. Krasnoshchekova, S. P. Manchkha, and V. G. Sviridov, “Experimental study of transverse correlations of temperature fluctuations in the turbulent mercury flow in a pipe,” Tr. Mosk. Energ. Inst., No. 235, 137–144 (1990). L. G. Genin, V. V. Boronko, T. E. Krasnoshchekova, S. P. Manchkha, and V. G. Sviridov, “Experimental study of transverse correlations of temperature fluctuations in the turbulent mercury flow in a pipe,” Tr. Mosk. Energ. Inst., No. 235, 137–144 (1990).
9.
Zurück zum Zitat N. G. Razuvanov, A Study of MHD Heat Exchange in the Liquid Metal Flow in a Horizontal Pipe, Doctoral Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2011). N. G. Razuvanov, A Study of MHD Heat Exchange in the Liquid Metal Flow in a Horizontal Pipe, Doctoral Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2011).
10.
Zurück zum Zitat I. A. Belyaev, N. G. Razuvanov, and V. C. Zagorskii, “Thermocouple sensor for temperature and velocity measurements in mhd flow of liquid metal,” Tepl. Protsessy Tekh., No. 12, 566–572 (2015). I. A. Belyaev, N. G. Razuvanov, and V. C. Zagorskii, “Thermocouple sensor for temperature and velocity measurements in mhd flow of liquid metal,” Tepl. Protsessy Tekh., No. 12, 566–572 (2015).
11.
Zurück zum Zitat T. E. Krasnoshchekova, S. P. Manchkha, and V. G. Sviridov, “Experimental study of the longitudinal correlations of temperature fluctuations in the turbulent mercury flow in a pipe,” Tr. Mosk. Energ. Inst., No. 184, 14–18 (1974). T. E. Krasnoshchekova, S. P. Manchkha, and V. G. Sviridov, “Experimental study of the longitudinal correlations of temperature fluctuations in the turbulent mercury flow in a pipe,” Tr. Mosk. Energ. Inst., No. 184, 14–18 (1974).
12.
Zurück zum Zitat V. G. Sviridov, The study of Hydrodynamics and Heat Transfer in the Channels in Relation to the Problem of Creating a Fusion Power Reactor, Doctoral Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 1989). V. G. Sviridov, The study of Hydrodynamics and Heat Transfer in the Channels in Relation to the Problem of Creating a Fusion Power Reactor, Doctoral Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 1989).
13.
Zurück zum Zitat S. P. Manchkha, V. G. Sviridov, and L. A. Sukomel, “Experimental study of temperature fields and heat transfer in the initial thermal section with turbulent flow of water,” Tr. Mosk. Energ. Inst., No. 609, 46–51 (1983). S. P. Manchkha, V. G. Sviridov, and L. A. Sukomel, “Experimental study of temperature fields and heat transfer in the initial thermal section with turbulent flow of water,” Tr. Mosk. Energ. Inst., No. 609, 46–51 (1983).
14.
Zurück zum Zitat L. G. Genin, V. G. Sviridov, and L. A. Sukomel, “Formation of a thermal boundary layer in a developed turbulent water flow in a pipe,” in Heat and Mass Transfer VII (Inst. Teplo- i Massoobmena Akad. Nauk B. SSR, Minsk, 1984) [in Russian]. L. G. Genin, V. G. Sviridov, and L. A. Sukomel, “Formation of a thermal boundary layer in a developed turbulent water flow in a pipe,” in Heat and Mass Transfer VII (Inst. Teplo- i Massoobmena Akad. Nauk B. SSR, Minsk, 1984) [in Russian].
15.
Zurück zum Zitat L. G. Genin, E. V. Kudryavtseva, Yu. A. Pakhotin, and V. G. Sviridov, “Temperature fields and heat transfer in the turbulent liquid metal flow in the initial thermal region,” Teplofiz. Vys. Temp. 16, 1243–1249 (1978). L. G. Genin, E. V. Kudryavtseva, Yu. A. Pakhotin, and V. G. Sviridov, “Temperature fields and heat transfer in the turbulent liquid metal flow in the initial thermal region,” Teplofiz. Vys. Temp. 16, 1243–1249 (1978).
16.
Zurück zum Zitat I. A. Belyaev, L. G. Genin, Y. I. Listratov, I. A. Melnikov, V. G. Sviridov, E. V. Sviridov, Yu. P. Ivochkin, N. G. Razuvanov, and Y. S. Shpansky, “Specific features of liquid metal heat transfer in a tokamak reactor,” Magnetohydrodynamics 49, 177–190 (2013).CrossRef I. A. Belyaev, L. G. Genin, Y. I. Listratov, I. A. Melnikov, V. G. Sviridov, E. V. Sviridov, Yu. P. Ivochkin, N. G. Razuvanov, and Y. S. Shpansky, “Specific features of liquid metal heat transfer in a tokamak reactor,” Magnetohydrodynamics 49, 177–190 (2013).CrossRef
17.
Zurück zum Zitat I. R. Kirillov, D. M. Obukhov, V. G. Sviridov, N. G. Razuvanov, I. A. Belyaev, I. I. Poddubnyi, and P. I. Kostichev, “Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load — downward and upward flow,” Fusion Eng. Des. 127, 226–233 (2018).CrossRef I. R. Kirillov, D. M. Obukhov, V. G. Sviridov, N. G. Razuvanov, I. A. Belyaev, I. I. Poddubnyi, and P. I. Kostichev, “Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load — downward and upward flow,” Fusion Eng. Des. 127, 226–233 (2018).CrossRef
18.
Zurück zum Zitat V. V. Subbotin, F. A. Kozlov, and N. N. Ivanovskii, “Heat transfer to sodium under the joint action of free and forced convection and during the deposition of oxides on the heat exchange surface,” Teplofiz. Vys. Temp. 1, 409–415 (1963). V. V. Subbotin, F. A. Kozlov, and N. N. Ivanovskii, “Heat transfer to sodium under the joint action of free and forced convection and during the deposition of oxides on the heat exchange surface,” Teplofiz. Vys. Temp. 1, 409–415 (1963).
19.
Zurück zum Zitat N. M. Turchin and R. V. Shumskii, “The study of the velocity field by the electromagnetic method,” Teplofiz. Vys. Temp. 1, 118 (1963). N. M. Turchin and R. V. Shumskii, “The study of the velocity field by the electromagnetic method,” Teplofiz. Vys. Temp. 1, 118 (1963).
20.
Zurück zum Zitat R. A. Gardner and P. S. Lykoudis, “Magneto-fluid-mechanic pipe flow in a transverse magnetic field. Part 1. Isothermal flow,” J. Fluid Mech. 47, 737–764 (1971).CrossRef R. A. Gardner and P. S. Lykoudis, “Magneto-fluid-mechanic pipe flow in a transverse magnetic field. Part 1. Isothermal flow,” J. Fluid Mech. 47, 737–764 (1971).CrossRef
21.
Zurück zum Zitat N. A. Ampleev, P. L. Kirillov, V. I. Subbotin, and M. Ya. Suvorov, “Heat transfer of liquid metal in a vertical pipe at low values of Pe,” in Liquid Metals: Collection of Papers, Ed. by P. L. Kirillov, V. I. Subbotin, P. A. Ushakov, and I. I. Novikov (Gosatomizdat, Moscow, 1967), pp. 15–32 [in Russian]. N. A. Ampleev, P. L. Kirillov, V. I. Subbotin, and M. Ya. Suvorov, “Heat transfer of liquid metal in a vertical pipe at low values of Pe,” in Liquid Metals: Collection of Papers, Ed. by P. L. Kirillov, V. I. Subbotin, P. A. Ushakov, and I. I. Novikov (Gosatomizdat, Moscow, 1967), pp. 15–32 [in Russian].
22.
Zurück zum Zitat L. S. Kokorev and V. N. Ryaposov, “Measurements of temperature distribution in a turbulent mercury flow in a circular pipe,” in Liquid Metals: Collection of Papers, Ed. by B. M. Borishanskii, S. S. Kutateladze, and V. L. Lel’chuk (Gosatomizdat, Moscow, 1963), pp. 124–138 [in Russian]. L. S. Kokorev and V. N. Ryaposov, “Measurements of temperature distribution in a turbulent mercury flow in a circular pipe,” in Liquid Metals: Collection of Papers, Ed. by B. M. Borishanskii, S. S. Kutateladze, and V. L. Lel’chuk (Gosatomizdat, Moscow, 1963), pp. 124–138 [in Russian].
Metadaten
Titel
A Technique for Scanning Probe Measurement of Temperature Fields in a Liquid Flow
verfasst von
I. A. Belyaev
D. A. Biryukov
N. Yu. Pyatnitskaya
N. G. Razuvanov
E. V. Sviridov
V. G. Sviridov
Publikationsdatum
01.06.2019
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 6/2019
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519060016

Weitere Artikel der Ausgabe 6/2019

Thermal Engineering 6/2019 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE PLANTS AND THEIR AUXILIARY EQUIPMENT

Experimental Aerodynamic Investigations of the 100-MW Two-Shaft Gas Turbine Unit Exhaust Duct

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Vapor–Gas Mixture Condensation in Tubes

    Premium Partner