Skip to main content
Erschienen in: Thermal Engineering 6/2019

01.06.2019 | HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Investigation into Transpiration Cooling of Blades in High-Temperature Gas Turbines

verfasst von: A. V. Vikulin, N. L. Yaroslavtsev, V. A. Zemlyanaya

Erschienen in: Thermal Engineering | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Among the methods for improving the performance of high-temperature gas turbines in gas-turbine engines (GTE) and gas-turbine units (GTU) is the implementation of transpiration cooling of the blades, since the maximum allowable temperature of blades with convective- or film-cooling ranges from 1800 to 1900 K. The basic advantage of this cooling method is in decreasing the required coolant flow due to extended-contact heat-transfer surface. Transpiration cooling systems employ porous metal materials. However, the effect of geometry of porous materials on air flow and heat transfer in them is still not clearly understood. The paper presents the results into investigation of models with a transpiration cooling system made of sintered stainless-steel fibers. The geometric characteristics of the investigated models depended on the material porosity. The thermal tests of the models were performed by the calorimetric method in a liquid-metal thermostat, while the hydraulic tests were carried out by the hot blow method under isothermal conditions. The experimental results can be entered into the database used by heat transfer software packages, thereby decreasing the labor intensity and time for designing a cooling system for gas turbine blades. The implementation of transpiration cooling offers the prospects for increasing the maximum allowable gas turbine temperature up to 2200 K.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, A. A. Sundukov, S. S. Bormatov, V. N. Semenov, V. A. Chesnova, and E. V. Pobezhimovskii, “Development of a combined cooling system for a high-pressure turbine nozzle blade,” Aviats. Prom-st., No. 4, 18–23 (2010). V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, A. A. Sundukov, S. S. Bormatov, V. N. Semenov, V. A. Chesnova, and E. V. Pobezhimovskii, “Development of a combined cooling system for a high-pressure turbine nozzle blade,” Aviats. Prom-st., No. 4, 18–23 (2010).
2.
Zurück zum Zitat E. N. Kablov, I. L. Svetlov, I. M. Demonis, and Yu. I. Folomeikin, “Monocrystal blades with transpiration cooling for high-temperature gas-turbine engines,” Aviats. Mater. Tekhnol., No. 1, 24–33 (2003). E. N. Kablov, I. L. Svetlov, I. M. Demonis, and Yu. I. Folomeikin, “Monocrystal blades with transpiration cooling for high-temperature gas-turbine engines,” Aviats. Mater. Tekhnol., No. 1, 24–33 (2003).
3.
Zurück zum Zitat E. N. Kablov, “Aviation materials science: Results and prospects,” Vestn. Ross. Akad. Nauk 72 (1), 3–12 (2002). E. N. Kablov, “Aviation materials science: Results and prospects,” Vestn. Ross. Akad. Nauk 72 (1), 3–12 (2002).
4.
Zurück zum Zitat N. A. Sharova, E. A. Tikhomirova, A. L. Barabash, A. A. Zhivushkin, and V. E. Brauer, “On the question of choosing new heat-resistant nickel alloys for prospective aviation GTE,” Vestn. Samar. Univ. Aerokosm. Tekh., Tekhnol. Mashinostr., No. 3(19), 249–255 (2009). N. A. Sharova, E. A. Tikhomirova, A. L. Barabash, A. A. Zhivushkin, and V. E. Brauer, “On the question of choosing new heat-resistant nickel alloys for prospective aviation GTE,” Vestn. Samar. Univ. Aerokosm. Tekh., Tekhnol. Mashinostr., No. 3(19), 249–255 (2009).
5.
Zurück zum Zitat A. F. Tret’yakov, “Features of manufacturing technology of turbine blades with porous cooling,” Inzh. Zh.: Nauka Innovatsii, No. 6(42), 10–23 (2015). A. F. Tret’yakov, “Features of manufacturing technology of turbine blades with porous cooling,” Inzh. Zh.: Nauka Innovatsii, No. 6(42), 10–23 (2015).
6.
Zurück zum Zitat A. V. Veretel’nik, A Study of the Efficiency of Transpiration Cooling of High-Temperature Gas Turbines, Candidate’s Dissertation in Engineering (Bauman Moscow State Technical Univ., Moscow, 2008). A. V. Veretel’nik, A Study of the Efficiency of Transpiration Cooling of High-Temperature Gas Turbines, Candidate’s Dissertation in Engineering (Bauman Moscow State Technical Univ., Moscow, 2008).
7.
Zurück zum Zitat E. M. Seliverstov, Research and Development of Methods for Calculating the Penetrating Cooling Systems for the High-Temperature Gas Turbine Blades, Candidate’s Dissertation in Engineering (Bauman Moscow State Technical Univ., Moscow, 2004). E. M. Seliverstov, Research and Development of Methods for Calculating the Penetrating Cooling Systems for the High-Temperature Gas Turbine Blades, Candidate’s Dissertation in Engineering (Bauman Moscow State Technical Univ., Moscow, 2004).
8.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, and V. A. Chesnova, “Improving the design of cooled blades of high-temperature gas turbines in order to increase the reliability and service life of modern aviation gas turbine engines and power generating gas turbine units,” Vestn. Rybin. Gos. Aviats. Tekhnol. Akad. im. P. A. Solov’eva, No. 2 (23), 7–11 (2012). V. G. Popov, A. V. Vikulin, and V. A. Chesnova, “Improving the design of cooled blades of high-temperature gas turbines in order to increase the reliability and service life of modern aviation gas turbine engines and power generating gas turbine units,” Vestn. Rybin. Gos. Aviats. Tekhnol. Akad. im. P. A. Solov’eva, No. 2 (23), 7–11 (2012).
9.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, A. A. Sundukov, V. A. Chesnova, and E. V. Pobezhimovskii, “Calorimetric method of thermal control of heat-stressed parts of GTE and GTU,” Nauchn. Tr. (Vestn. MATI), No. 18 (90), 50–58 (2011). V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, A. A. Sundukov, V. A. Chesnova, and E. V. Pobezhimovskii, “Calorimetric method of thermal control of heat-stressed parts of GTE and GTU,” Nauchn. Tr. (Vestn. MATI), No. 18 (90), 50–58 (2011).
11.
Zurück zum Zitat V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, and V. A. Chesnova, “Analysis of the possibility of expanding the range of channel bandwidth regulation of a complex configuration of heat-stressed structures,” Aviats. Prom-st., No. 2, 20–25 (2013). V. G. Popov, A. V. Vikulin, N. L. Yaroslavtsev, and V. A. Chesnova, “Analysis of the possibility of expanding the range of channel bandwidth regulation of a complex configuration of heat-stressed structures,” Aviats. Prom-st., No. 2, 20–25 (2013).
Metadaten
Titel
Investigation into Transpiration Cooling of Blades in High-Temperature Gas Turbines
verfasst von
A. V. Vikulin
N. L. Yaroslavtsev
V. A. Zemlyanaya
Publikationsdatum
01.06.2019
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 6/2019
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519060090

Weitere Artikel der Ausgabe 6/2019

Thermal Engineering 6/2019 Zur Ausgabe

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Vapor–Gas Mixture Condensation in Tubes

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

A Technique for Scanning Probe Measurement of Temperature Fields in a Liquid Flow

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE PLANTS AND THEIR AUXILIARY EQUIPMENT

Experimental Aerodynamic Investigations of the 100-MW Two-Shaft Gas Turbine Unit Exhaust Duct

    Premium Partner