Skip to main content
Erschienen in: Thermal Engineering 10/2022

01.10.2022 | GENERAL SUBJECTS

The Economics of Carbon Dioxide Capture and Storage Technologies (Review)

verfasst von: S. P. Filippov

Erschienen in: Thermal Engineering | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The deployment of CO2 capture and storage (or carbon capture and storage (CCS)) technologies will enable carbon neutrality to be achieved during commercial utilization of fossil fuels. The performed studies have demonstrated that CCS technologies are quite energy-intensive and expensive. This primarily concerns the CO2 capturing equipment, which is responsible for 60–80% of the CCS total expenditures. With a decrease in the partial pressure of CO2 in a gas mixture and the capacity of the capture plant, the cost of CO2 extraction increases drastically. This applies particularly to thermal power plants (TPPs). Their provision with CO2 capture systems increases the specific capital expenditures by 1.6–2.3 times and the cost of generated electricity by 1.4–1.6 times. The power required for operation of these system amounts to approximately 9–12% of the total plant output and up to 20% with certain technologies. The unit cost of CO2 capture becomes much greater if the power plant capacity is below 200 MW. The deployment of the CCS industry will require construction of a branched pipeline system for transportation of large volumes of CO2, comparable to the gas transmission system. This will extend the potential for application of CCS technologies. The specific expenditures for pipeline transportation of CO2 are controlled by the transported amount and phase state of CO2. Increasing the transported amount of CO2 from 0.1 to 5.0 million t/year cuts down the unit cost of transportation by almost an order of magnitude. The expenditures for CO2 storage depends essentially on the characteristics of the geological reservoir. The cheapest option of CO2 storage is onshore depleted oil and gas fields. Development of the CCS technology basis requires generous state support.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Glasgow Climate Pact (United Nations, New York, 2021). https://unfccc.int/sites/default/files/resource/ cop26_auv_2f_cover_decision.pdf Glasgow Climate Pact (United Nations, New York, 2021). https://​unfccc.​int/​sites/​default/​files/​resource/​ cop26_auv_2f_cover_decision.pdf
2.
Zurück zum Zitat Paris Agreement (United Nations, New York, 2015). Paris Agreement (United Nations, New York, 2015).
3.
Zurück zum Zitat Net Zero by 2050: A Roadmap for the Global Energy Sector (International Energy Agency, Paris. 2021). https:// iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf Net Zero by 2050: A Roadmap for the Global Energy Sector (International Energy Agency, Paris. 2021). https:// iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf
4.
Zurück zum Zitat World Economic Outlook, January 2022 ed. (International Monetary Fund, Washington, DC, 2022). https://www.imf.org/en/publications/weo World Economic Outlook, January 2022 ed. (International Monetary Fund, Washington, DC, 2022). https://​www.​imf.​org/​en/​publications/​weo
6.
Zurück zum Zitat “DOE awarding $72M to 27 projects to develop and advance carbon capture technologies, including direct air capture,” Green Car Congr., Sept. 3 (2020). https:// www.greencarcongress.com/2020/09/20200903-ccdac. html “DOE awarding $72M to 27 projects to develop and advance carbon capture technologies, including direct air capture,” Green Car Congr., Sept. 3 (2020). https:// www.greencarcongress.com/2020/09/20200903-ccdac. html
8.
Zurück zum Zitat D. Kearns, H. Liu, and C. Consoli, Technology Readiness and Cost of CCS (Global Carbon Capture and Storage Inst., Melbourne, Australia, 2021). D. Kearns, H. Liu, and C. Consoli, Technology Readiness and Cost of CCS (Global Carbon Capture and Storage Inst., Melbourne, Australia, 2021).
10.
Zurück zum Zitat M. Bui, C. S. Adjiman, A. Bardow, and E. J. Anthony, “Carbon capture and storage (CCS): The way forward,” Energy Environ. Sci. 11, 1062−1176 (2018). https://pubs. rsc.org/en/content/articlelanding/2018/EE/C7EE02342A. https://doi.org/10.1039/C7EE02342ACrossRef M. Bui, C. S. Adjiman, A. Bardow, and E. J. Anthony, “Carbon capture and storage (CCS): The way forward,” Energy Environ. Sci. 11, 1062−1176 (2018). https://​pubs.​ rsc.org/en/content/articlelanding/2018/EE/C7EE02342A. https://​doi.​org/​10.​1039/​C7EE02342ACrossRef
11.
Zurück zum Zitat M. Gatti, E. Martelli, D. Di Bona, M. Gabba, R. Scaccabarozzi, M. Spinelli, F. Viganò, and S. Consonni, “Preliminary performance and cost evaluation of four alternative technologies for post-combustion CO2 capture in natural gas-fired power plants,” Energies 13, 543 (2020). https://doi.org/10.3390/en13030543CrossRef M. Gatti, E. Martelli, D. Di Bona, M. Gabba, R. Scaccabarozzi, M. Spinelli, F. Viganò, and S. Consonni, “Preliminary performance and cost evaluation of four alternative technologies for post-combustion CO2 capture in natural gas-fired power plants,” Energies 13, 543 (2020). https://​doi.​org/​10.​3390/​en13030543CrossRef
12.
Zurück zum Zitat Carbon Capture Program (National Energy Technology Laboratory, 2021). https://www.netl.doe.gov/sites/ d-efault/files/2021-11/Program-115.pdf Carbon Capture Program (National Energy Technology Laboratory, 2021). https://​www.​netl.​doe.​gov/​sites/​ d-efault/files/2021-11/Program-115.pdf
14.
Zurück zum Zitat Carbon Dioxide Recovery and Removal (Linde Engineering, 2021). https://www.linde-engineering.com/ en/process-plants/adsorption-and-membrane-plants/ carbon_dioxide_recovery_removal/index.html Carbon Dioxide Recovery and Removal (Linde Engineering, 2021). https://​www.​linde-engineering.​com/​ en/process-plants/adsorption-and-membrane-plants/ carbon_dioxide_recovery_removal/index.html
18.
Zurück zum Zitat A. S. Kosoi, Yu. A. Zeigarnik, O. S. Popel’, M. V. Sinkevich, S. P. Filippov, and V. Ya. Shterenberg, “The conceptual process arrangement of a steam–gas power plant with fully capturing carbon dioxide from combustion products,” Therm. Eng. 65, 597–605 (2018). https://doi.org/10.1134/S0040601518090045CrossRef A. S. Kosoi, Yu. A. Zeigarnik, O. S. Popel’, M. V. Sinkevich, S. P. Filippov, and V. Ya. Shterenberg, “The conceptual process arrangement of a steam–gas power plant with fully capturing carbon dioxide from combustion products,” Therm. Eng. 65, 597–605 (2018). https://​doi.​org/​10.​1134/​S004060151809004​5CrossRef
19.
20.
Zurück zum Zitat V. Balepin, A. Castrogiovanni, A. Robertson, and B. Calayag, “Supersonic post-combustion inertial CO2 extraction system: Bench scale project status update,” Presented at NETL CO2 Capture Technology Meeting, Pittsburgh, Penn., July 29−Aug. 1, 2014. https:// netl.doe.gov/sites/default/files/eventproceedings/2014/ 2014%20NETL%20CO2%20Capture/A-Castrogiovanni-ATKSupersonic-Post-Combustion.pdf V. Balepin, A. Castrogiovanni, A. Robertson, and B. Calayag, “Supersonic post-combustion inertial CO2 extraction system: Bench scale project status update,” Presented at NETL CO2 Capture Technology Meeting, Pittsburgh, Penn., July 29−Aug. 1, 2014. https:// netl.doe.gov/sites/default/files/eventproceedings/2014/ 2014%20NETL%20CO2%20Capture/A-Castrogiovanni-ATKSupersonic-Post-Combustion.pdf
21.
Zurück zum Zitat K. Gerdes, “Incentivizing carbon capture retrofits of the existing PC and NGCC fleet,” Presented at NETL CO2 Capture Technology Meeting, Pittsburgh, Penn., July 29−Aug. 1, 2014. K. Gerdes, “Incentivizing carbon capture retrofits of the existing PC and NGCC fleet,” Presented at NETL CO2 Capture Technology Meeting, Pittsburgh, Penn., July 29−Aug. 1, 2014.
23.
Zurück zum Zitat R. J. Allam, M. R. Palmer, G. W. Brown, Jr., J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita, C. Jones, Jr., “High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide,” Energy Procedia 37, 1135–1149 (2013). https://doi.org/10.1016/j.egypro.2013.05.211CrossRef R. J. Allam, M. R. Palmer, G. W. Brown, Jr., J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita, C. Jones, Jr., “High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide,” Energy Procedia 37, 1135–1149 (2013). https://​doi.​org/​10.​1016/​j.​egypro.​2013.​05.​211CrossRef
24.
Zurück zum Zitat R. Allam, S. Martin, B. Forrest, J. Fetvedt, X. Lu, D. Freed, G. W. Brown, T. Sasaki, M. Itoh, and J. Manning, “Demonstration of the Allam Cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture,” Energy Procedia 114, 5948–5966 (2017). https://doi.org/10.1016/j.egypro.2017.03.1731CrossRef R. Allam, S. Martin, B. Forrest, J. Fetvedt, X. Lu, D. Freed, G. W. Brown, T. Sasaki, M. Itoh, and J. Manning, “Demonstration of the Allam Cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture,” Energy Procedia 114, 5948–5966 (2017). https://​doi.​org/​10.​1016/​j.​egypro.​2017.​03.​1731CrossRef
25.
Zurück zum Zitat S. Patel, “UK’s first gas-fired Allam cycle power plant taking shape,” POWER Mag., July (2021). https:// www.powermag.com/uks-first-gas-fired-allam-cycle-power-plant-taking-shape/ S. Patel, “UK’s first gas-fired Allam cycle power plant taking shape,” POWER Mag., July (2021). https:// www.powermag.com/uks-first-gas-fired-allam-cycle-power-plant-taking-shape/
26.
Zurück zum Zitat B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. Meyer, Carbon Dioxide Capture and Storage: IPCC Special Report (Cambridge Univ. Press, New York, 2005). https://www.ipcc.ch/site/assets/uploads/2018/ 03/srccs_wholereport-1.pdf B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. Meyer, Carbon Dioxide Capture and Storage: IPCC Special Report (Cambridge Univ. Press, New York, 2005). https://​www.​ipcc.​ch/​site/​assets/​uploads/​2018/​ 03/srccs_wholereport-1.pdf
29.
Zurück zum Zitat C. Henderson, Chemical Looping Combustion of Coal (IEA Clean Coal Centre, 2010). https://usea.org/sites/ default/files/122010_Chemical%20looping%20combustion%20of%20coal_CCC178.pdf C. Henderson, Chemical Looping Combustion of Coal (IEA Clean Coal Centre, 2010). https://​usea.​org/​sites/​ default/files/122010_Chemical%20looping%20combustion%20of%20coal_CCC178.pdf
30.
Zurück zum Zitat R. J. Allam, Improved Oxygen Production Technologies (International Energy Agency, 2007). https://ieaghg. org/docs/General_Docs/Reports/2007-14.pdf R. J. Allam, Improved Oxygen Production Technologies (International Energy Agency, 2007). https://​ieaghg.​ org/docs/General_Docs/Reports/2007-14.pdf
33.
Zurück zum Zitat Oxygen Generation: By Vacuum Pressure Swing Adsorption (The Linde Group, 2017). https://www.linde-engineering. com/en/images/26389_LE_Global_Adsorption_O2_ VPSA_Brochure_Update_RZ3_VIEW_tcm19-160681.pdf Oxygen Generation: By Vacuum Pressure Swing Adsorption (The Linde Group, 2017). https://​www.​linde-engineering.​ com/en/images/26389_LE_Global_Adsorption_O2_ VPSA_Brochure_Update_RZ3_VIEW_tcm19-160681.pdf
35.
Zurück zum Zitat H. Ghezel-Ayagh, “Pilot test of novel electrochemical membrane system for carbon dioxide capture and power generation,” Presented at 2016 NETL CO2 Capture Technology Meeting, Pittsburgh, Penn., Aug. 8–12, 2016. H. Ghezel-Ayagh, “Pilot test of novel electrochemical membrane system for carbon dioxide capture and power generation,” Presented at 2016 NETL CO2 Capture Technology Meeting, Pittsburgh, Penn., Aug. 8–12, 2016.
36.
Zurück zum Zitat Cost and Performance Characteristics of new Generating Technologies: Annual Energy Outlook 2021 (U.S. Energy Information Administration, Washington, DC, 2021). https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_ 8.2.pdf Cost and Performance Characteristics of new Generating Technologies: Annual Energy Outlook 2021 (U.S. Energy Information Administration, Washington, DC, 2021). https://​www.​eia.​gov/​outlooks/​aeo/​assumptions/​pdf/​table_​ 8.2.pdf
37.
Zurück zum Zitat Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies (U.S. Energy Information Administration, Washington, DC, 2020). https://www.eia.gov/analysis/studies/ powerplants/capitalcost/pdf/capital_cost_AEO2020.pdf Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies (U.S. Energy Information Administration, Washington, DC, 2020). https://​www.​eia.​gov/​analysis/​studies/​ powerplants/capitalcost/pdf/capital_cost_AEO2020.pdf
38.
Zurück zum Zitat S. P. Filippov, “Prospects for using low-capacity power plants,” At. Energy 111, 321–327 (2011).CrossRef S. P. Filippov, “Prospects for using low-capacity power plants,” At. Energy 111, 321–327 (2011).CrossRef
39.
Zurück zum Zitat S. P. Filippov, “Small-capacity power engineering in Russia,” Therm. Eng. 56, 665–672 (2009).CrossRef S. P. Filippov, “Small-capacity power engineering in Russia,” Therm. Eng. 56, 665–672 (2009).CrossRef
41.
Zurück zum Zitat S. P. Filippov, “Development of centralized district heating in Russia,” Therm. Eng. 56, 985–997 (2009).CrossRef S. P. Filippov, “Development of centralized district heating in Russia,” Therm. Eng. 56, 985–997 (2009).CrossRef
43.
Zurück zum Zitat Fuel Cell Carbon Capture (Fuel Cell Energy, 2022). https://www.fuelcellenergy.com/wp-content/uploads/ 2017/02/Fuel-Cells-SureSourceCapture.pdf Fuel Cell Carbon Capture (Fuel Cell Energy, 2022). https://​www.​fuelcellenergy.​com/​wp-content/​uploads/​ 2017/02/Fuel-Cells-SureSourceCapture.pdf
44.
Zurück zum Zitat The Fuel Cell Industry Review 2020 (E4tech, 2021). https://fuelcellindustryreview.com/. Accessed February 16, 2022. The Fuel Cell Industry Review 2020 (E4tech, 2021). https://​fuelcellindustry​review.​com/​.​ Accessed February 16, 2022.
45.
Zurück zum Zitat E. S. Rubin, M. B. Berkenpas, and S. McCoy, The Economics of CO 2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs (Carnegie Mellon Univ.; Center for Energy and Environmental Studies, Pittsburgh, Penn., 2008). https://www.cmu.edu/epp/iecm/ IECM_Publications/2008ra%20McCoy%20et%20al,% 20IECM%20Trans%20&%20Storage%20Tech.pdf E. S. Rubin, M. B. Berkenpas, and S. McCoy, The Economics of CO 2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs (Carnegie Mellon Univ.; Center for Energy and Environmental Studies, Pittsburgh, Penn., 2008). https://​www.​cmu.​edu/​epp/​iecm/​ IECM_Publications/2008ra%20McCoy%20et%20al,% 20IECM%20Trans%20&%20Storage%20Tech.pdf
46.
Zurück zum Zitat S. P. Filippov and A. B. Yaroslavtsev, “Hydrogen energy: Development prospects and materials,” Russ. Chem. Rev. 90, 627−643 (2021). http://mi.mathnet.ru/rcr4346CrossRef S. P. Filippov and A. B. Yaroslavtsev, “Hydrogen energy: Development prospects and materials,” Russ. Chem. Rev. 90, 627−643 (2021). http://​mi.​mathnet.​ru/​rcr4346CrossRef
47.
Zurück zum Zitat The Cost of Subsurface Storage of CO 2 : ZEP Memorandum (European Zero Emission Technology and Innovation Platform, Brussels, 2019). https://zeroemissionsplatform.eu/wp-content/uploads/Cost-of-storage.pdf The Cost of Subsurface Storage of CO 2 : ZEP Memorandum (European Zero Emission Technology and Innovation Platform, Brussels, 2019). https://​zeroemissionspla​tform.​eu/​wp-content/​uploads/​Cost-of-storage.​pdf
48.
Zurück zum Zitat Progressing Development of the UK’s Strategic Carbon Dioxide Storage Resources (Pale Blue Dot Axis Well Technology, Costain, 2016). https://onedrive.live.com/?a-uthkey= %21ANk4zmABaDBBtjA&cid=56FC709A 2072366C& id=56FC709A2072366C%211573&parId=56FC709A 2072366C%211559&o=OneUp Progressing Development of the UK’s Strategic Carbon Dioxide Storage Resources (Pale Blue Dot Axis Well Technology, Costain, 2016). https://​onedrive.​live.​com/​?​a-uthkey=​ %21ANk4zmABaDBBtjA&cid=56FC709A 2072366C& id=56FC709A2072366C%211573&parId=56FC709A 2072366C%211559&o=OneUp
49.
Zurück zum Zitat The Costs of CO 2 Storage: Post-Demonstration CCS in the EU (European Technology Platform for Zero Emission Fossil Fuel Power Plants, 2011). https://www.globalccsinstitute.com/archive/hub/publications/119816/costs-co2-storage-post-demonstration-ccs-eu.pdf The Costs of CO 2 Storage: Post-Demonstration CCS in the EU (European Technology Platform for Zero Emission Fossil Fuel Power Plants, 2011). https://​www.​globalccsinstitu​te.​com/​archive/​hub/​publications/​119816/​costs-co2-storage-post-demonstration-ccs-eu.​pdf
50.
Zurück zum Zitat The Global Status of CCS: 2021 (Global Carbon Capture and Storage Institute, Melbourne, Australia, 2021). https:// www.globalccsinstitute.com/wp-content/uploads/2021/ 10/2021-Global-Status-of-CCS-Global-CCS-Institute-Oct-21.pdf The Global Status of CCS: 2021 (Global Carbon Capture and Storage Institute, Melbourne, Australia, 2021). https:// www.globalccsinstitute.com/wp-content/uploads/2021/ 10/2021-Global-Status-of-CCS-Global-CCS-Institute-Oct-21.pdf
51.
Zurück zum Zitat Consolidated Appropriations Act, 2021 (U.S. Congress, Washington, DC, 2020). https://www.congress.gov/ 116/bills/hr133/BILLS-116hr133enr.pdf Consolidated Appropriations Act, 2021 (U.S. Congress, Washington, DC, 2020). https://​www.​congress.​gov/​ 116/bills/hr133/BILLS-116hr133enr.pdf
52.
Zurück zum Zitat Hydrogen Strategy: Enabling a Low-Carbon Economy (U.S. Department of Energy, Washington, DC, 2020). https://www.energy.gov/sites/prod/files/2020/07/f76/ USDOE_FE_Hydrogen_Strategy_July2020.pdf Hydrogen Strategy: Enabling a Low-Carbon Economy (U.S. Department of Energy, Washington, DC, 2020). https://​www.​energy.​gov/​sites/​prod/​files/​2020/​07/​f76/​ USDOE_FE_Hydrogen_Strategy_July2020.pdf
Metadaten
Titel
The Economics of Carbon Dioxide Capture and Storage Technologies (Review)
verfasst von
S. P. Filippov
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 10/2022
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522100020

Weitere Artikel der Ausgabe 10/2022

Thermal Engineering 10/2022 Zur Ausgabe

HEAT AND MASS TRANSFER, AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Temperature Dependence of the Thermal Coefficient of Linear Expansion

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Distribution of Specific Steam Loads in Tube Bundles of Condensers for Cogeneration Steam Turbines

    Premium Partner