Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2020

01.07.2020

Convection in Water Droplet in the Presence of External Air Motion

verfasst von: S. Ya. Misyura, V. S. Morozov, O. A. Gobyzov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Convection in a sessile droplet of water in a laminar air flow was studied. The experiments were conducted in the air velocity range \(U_{1}=2\)–5 m/s. The experimental data are compared with approximate numerical solutions and an approximate analytic solution made for small numbers Re for both the liquid and gas phase. It has been shown experimentally and theoretically that the maximum velocity in the droplet is proportional to the air velocity to the power of 1.5 and the droplet radius to the power of 0.5. An explanation of the fact that the experimental data are up to 50 times as small as the theoretical calculations has been suggested for the first time. The obtained dependencies may be useful for modeling the behavior of droplets in a spray.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Therm. Engin., 2017, vol. 125, pp. 104–110. Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Therm. Engin., 2017, vol. 125, pp. 104–110.
2.
Zurück zum Zitat Volkov, R.S. and Strizhak, P.A., Research of Temperature Fields and Convection Velocities in Evaporating Water Droplets Using Planar Laser-Induced Fluorescence and Particle Image Velocimetry,Exp. Therm. Fluid Sci., 201, vol. 897, pp. 392–407. Volkov, R.S. and Strizhak, P.A., Research of Temperature Fields and Convection Velocities in Evaporating Water Droplets Using Planar Laser-Induced Fluorescence and Particle Image Velocimetry,Exp. Therm. Fluid Sci., 201, vol. 897, pp. 392–407.
3.
Zurück zum Zitat Nizovtsev, M.I., Borodulin, V.Y., and Letushko, V.N., Influence of Condensation on the Efficiency of Regenerative Heat Exchanger for Ventilation, Appl. Therm. Engin., 2017, vol. 111, pp. 997–1007. Nizovtsev, M.I., Borodulin, V.Y., and Letushko, V.N., Influence of Condensation on the Efficiency of Regenerative Heat Exchanger for Ventilation, Appl. Therm. Engin., 2017, vol. 111, pp. 997–1007.
4.
Zurück zum Zitat Korobeinichev, O.P. et al., Fire Suppression by Low-Volatile Chemically Active Fire Suppressants Using Aerosol Technology,Fire Saf. J., 2012, vol. 51, pp. 102–109. Korobeinichev, O.P. et al., Fire Suppression by Low-Volatile Chemically Active Fire Suppressants Using Aerosol Technology,Fire Saf. J., 2012, vol. 51, pp. 102–109.
5.
Zurück zum Zitat Volkov, R.S., Kuznetsov, G.V., and Strizhak, P.A., Temperature and Velocity Fields of the Gas-Vapor Flow near Evaporating Water Droplets, Int. J. Therm. Sci., 2018, vol. 134, pp. 337–354. Volkov, R.S., Kuznetsov, G.V., and Strizhak, P.A., Temperature and Velocity Fields of the Gas-Vapor Flow near Evaporating Water Droplets, Int. J. Therm. Sci., 2018, vol. 134, pp. 337–354.
6.
Zurück zum Zitat Carrier, O., Shahidzadeh-Bonn, N., Zargar, R., Aytouna, M., Habibi, M., Eggers, J., and Bonn, D., Evaporation of Water: Evaporation Rate and Collective Effects, J. Fluid Mech., 2016, vol. 798, pp. 774–786. Carrier, O., Shahidzadeh-Bonn, N., Zargar, R., Aytouna, M., Habibi, M., Eggers, J., and Bonn, D., Evaporation of Water: Evaporation Rate and Collective Effects, J. Fluid Mech., 2016, vol. 798, pp. 774–786.
7.
Zurück zum Zitat Strizhak, P.A., Volkov, R.S., Castanet, G., Lemoine, F., Rybdylova, O., and Sazhin, S.S., Heating and Evaporation of Suspended Water Droplets: Experimental Studies and Modeling, Int. J. Heat Mass Transfer, 2018, vol. 127, pp. 92–106. Strizhak, P.A., Volkov, R.S., Castanet, G., Lemoine, F., Rybdylova, O., and Sazhin, S.S., Heating and Evaporation of Suspended Water Droplets: Experimental Studies and Modeling, Int. J. Heat Mass Transfer, 2018, vol. 127, pp. 92–106.
8.
Zurück zum Zitat Tonini, S. and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications,Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253. Tonini, S. and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications,Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.
9.
Zurück zum Zitat Zhang, Y., Jia, M., Yi, P., Liu, H., and Xie, M., An Efficient Liquid Film Vaporization Model for Multi-Component Fuels Considering Thermal and Mass Diffusions, Appl. Therm. Engin., 2017, vol. 112, pp. 534–548. Zhang, Y., Jia, M., Yi, P., Liu, H., and Xie, M., An Efficient Liquid Film Vaporization Model for Multi-Component Fuels Considering Thermal and Mass Diffusions, Appl. Therm. Engin., 2017, vol. 112, pp. 534–548.
10.
Zurück zum Zitat Rozentsvaig, A. and Strashinskii, Ch., Hydrodynamic Aspects of Boiling up of a Disperse Phase in a Homogeneous Turbulent Flow of an Emulsion, High Temp., 2011, vol. 49, pp. 143–146. Rozentsvaig, A. and Strashinskii, Ch., Hydrodynamic Aspects of Boiling up of a Disperse Phase in a Homogeneous Turbulent Flow of an Emulsion, High Temp., 2011, vol. 49, pp. 143–146.
11.
Zurück zum Zitat Misyura, S.Y. and Nakoryakov, V.E., Nonstationary Combustion of Methane with Gas Hydrate Dissociation, Energy Fuels, 2013, vol. 27, no. 11, pp. 7089–7097. Misyura, S.Y. and Nakoryakov, V.E., Nonstationary Combustion of Methane with Gas Hydrate Dissociation, Energy Fuels, 2013, vol. 27, no. 11, pp. 7089–7097.
12.
Zurück zum Zitat Misyura, S.Y. and Donskoy, I.G., Dissociation of Natural and Artificial Gas Hydrate, Chem. Eng. Sci., 2016, vol. 148, pp. 65–77. Misyura, S.Y. and Donskoy, I.G., Dissociation of Natural and Artificial Gas Hydrate, Chem. Eng. Sci., 2016, vol. 148, pp. 65–77.
13.
Zurück zum Zitat Semenov, M.E. et al., DSC and Thermal Imaging Studies of Methane Hydrate Formation and Dissociation in Water Emulsions in Crude Oils, J. Therm. An. Calor., 2015, vol. 119, pp. 757–767. Semenov, M.E. et al., DSC and Thermal Imaging Studies of Methane Hydrate Formation and Dissociation in Water Emulsions in Crude Oils, J. Therm. An. Calor., 2015, vol. 119, pp. 757–767.
14.
Zurück zum Zitat Misyura, S.Y., Effect of Heat Transfer on the Kinetics of Methane Hydrate Dissociation, Chem. Phys. Lett., 201, vol. 3583, pp. 34–37. Misyura, S.Y., Effect of Heat Transfer on the Kinetics of Methane Hydrate Dissociation, Chem. Phys. Lett., 201, vol. 3583, pp. 34–37.
15.
Zurück zum Zitat Balboni, E., Espinosa-Marzal, R.M., Doehne, E., and Scherer, G.W., Can Drying and Re-Wetting of Magnesium Sulfate Salt Lead to Damage of Stone?, Environ. Earth Sci., 2011, vol. 63, pp. 1463–1473. Balboni, E., Espinosa-Marzal, R.M., Doehne, E., and Scherer, G.W., Can Drying and Re-Wetting of Magnesium Sulfate Salt Lead to Damage of Stone?, Environ. Earth Sci., 2011, vol. 63, pp. 1463–1473.
16.
Zurück zum Zitat Steiger, M. and Asmussen, S., Crystallization of Sodium Sulfate Phases in Porous Materials: The Phase Diagram Na\(_{2}\)SO\(_{4}\)–H\(_{2}\)O and the Generation of Stress, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4291–4306. Steiger, M. and Asmussen, S., Crystallization of Sodium Sulfate Phases in Porous Materials: The Phase Diagram Na\(_{2}\)SO\(_{4}\)–H\(_{2}\)O and the Generation of Stress, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4291–4306.
17.
Zurück zum Zitat Schiro, M., Ruiz-Agudo, E., and Rodriguez-Navarro, C., Damage Mechanism of Porous Materials due to In-Pore Salt Crystallization,Phys. Rev. Lett., 2012, vol. 109, p. 265503. Schiro, M., Ruiz-Agudo, E., and Rodriguez-Navarro, C., Damage Mechanism of Porous Materials due to In-Pore Salt Crystallization,Phys. Rev. Lett., 2012, vol. 109, p. 265503.
18.
Zurück zum Zitat Misyura, S.Y., Effect of Various Key Factors on the Law of Droplet Evaporation on the Heated Horizontal Wall, Chem. Eng. Res. Des., 2018, vol. 129, pp. 306–313. Misyura, S.Y., Effect of Various Key Factors on the Law of Droplet Evaporation on the Heated Horizontal Wall, Chem. Eng. Res. Des., 2018, vol. 129, pp. 306–313.
19.
Zurück zum Zitat Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47. Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.
20.
Zurück zum Zitat Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloids Surf., A, 2011, vol. 381, pp. 31–36. Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloids Surf., A, 2011, vol. 381, pp. 31–36.
21.
Zurück zum Zitat Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf., A, 2018, vol. 559, pp. 275–283. Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf., A, 2018, vol. 559, pp. 275–283.
22.
Zurück zum Zitat Volkov, R.S. et al., The Influence of Key Factors on the Heat and Mass Transfer of a Sessile Droplet, Exp. Therm. Fluid Sci., 2018, vol. 99, pp. 59–70. Volkov, R.S. et al., The Influence of Key Factors on the Heat and Mass Transfer of a Sessile Droplet, Exp. Therm. Fluid Sci., 2018, vol. 99, pp. 59–70.
23.
Zurück zum Zitat Misyura, S.Y., Evaporation and Heat Transfer of a Sessile Drop of Aqueous Salt Solution on Heated Wall, Int. J. Heat Mass Transfer, 2018, vol. 116, pp. 667–674. Misyura, S.Y., Evaporation and Heat Transfer of a Sessile Drop of Aqueous Salt Solution on Heated Wall, Int. J. Heat Mass Transfer, 2018, vol. 116, pp. 667–674.
24.
Zurück zum Zitat Hu, H. and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet,Langmuir, 2005, vol. 21, pp. 3972–3980. Hu, H. and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet,Langmuir, 2005, vol. 21, pp. 3972–3980.
25.
Zurück zum Zitat Hu, H. and Larson, R.G., Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094. Hu, H. and Larson, R.G., Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.
26.
Zurück zum Zitat Misyura, S.Y., Evaporation of a Sessile Water Drop and a Drop of Aqueous Salt Solution, Sci. Rep., 2017, vol. 7, p. 14759. Misyura, S.Y., Evaporation of a Sessile Water Drop and a Drop of Aqueous Salt Solution, Sci. Rep., 2017, vol. 7, p. 14759.
27.
Zurück zum Zitat Misyura, S.Y., Heat Transfer of Aqueous Salt Solutions during Evaporation on a Structured Heated Wall, Int. Commun. Heat Mass Transfer, 2018, vol. 96, pp. 7–11. Misyura, S.Y., Heat Transfer of Aqueous Salt Solutions during Evaporation on a Structured Heated Wall, Int. Commun. Heat Mass Transfer, 2018, vol. 96, pp. 7–11.
28.
Zurück zum Zitat Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J.G.M., Zhang, X., and Lohse, D., Evaporating Pure, Binary and Ternary Droplets: Thermal Effect and Axial Symmetry Breaking, J. Fluid Mech., 2017, vol. 823, pp. 470–497. Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J.G.M., Zhang, X., and Lohse, D., Evaporating Pure, Binary and Ternary Droplets: Thermal Effect and Axial Symmetry Breaking, J. Fluid Mech., 2017, vol. 823, pp. 470–497.
29.
Zurück zum Zitat Machrafi, H., Rednikov, A., Colinet, P., and Dauby, P., Benard Instabilities in a Binary-Liquid Layer Evaporating into an Inert Gas,J. Colloid Interface Sci., 2010, vol. 349, pp. 331–353. Machrafi, H., Rednikov, A., Colinet, P., and Dauby, P., Benard Instabilities in a Binary-Liquid Layer Evaporating into an Inert Gas,J. Colloid Interface Sci., 2010, vol. 349, pp. 331–353.
30.
Zurück zum Zitat Semenov, S. et al., Evaporation of Droplets of Surfactant Solutions, Langmuir, 2013, vol. 29, pp. 10028–10036. Semenov, S. et al., Evaporation of Droplets of Surfactant Solutions, Langmuir, 2013, vol. 29, pp. 10028–10036.
31.
Zurück zum Zitat Semenov, S. et al., Simultaneous Spreading and Evaporation: Recent Developments, Adv. Colloid Interface Sci., 2014, vol. 206, pp. 382–398. Semenov, S. et al., Simultaneous Spreading and Evaporation: Recent Developments, Adv. Colloid Interface Sci., 2014, vol. 206, pp. 382–398.
32.
Zurück zum Zitat Misyura, S.Y., Non-Isothermal Evaporation of Salt Solutions on a Microstructured Surface, Nanoscale Microscale Thermophys. Eng., 2018, vol. 22, no. 3, pp. 213–229. Misyura, S.Y., Non-Isothermal Evaporation of Salt Solutions on a Microstructured Surface, Nanoscale Microscale Thermophys. Eng., 2018, vol. 22, no. 3, pp. 213–229.
33.
Zurück zum Zitat Petrov, A.G., The Energy Dissipation Rate of a Viscous Fluid with a Condition for Shear Stress on a Boundary Streamline,Dokl. Akad. Nauk, 1989, vol. 304, no. 5, pp. 1082–1086. Petrov, A.G., The Energy Dissipation Rate of a Viscous Fluid with a Condition for Shear Stress on a Boundary Streamline,Dokl. Akad. Nauk, 1989, vol. 304, no. 5, pp. 1082–1086.
34.
Zurück zum Zitat Petrov, A.G., Circulation Within Viscous Deformed Drops Moving at a Constant Velocity in a Gas, J. Appl. Mech. Tech. Phys., 1990, vol. 30, no. 6, pp. 957–964; DOI: 10.1007/bf00851505. Petrov, A.G., Circulation Within Viscous Deformed Drops Moving at a Constant Velocity in a Gas, J. Appl. Mech. Tech. Phys., 1990, vol. 30, no. 6, pp. 957–964; DOI: 10.1007/bf00851505.
35.
Zurück zum Zitat Edelmann, C.A., Clercq, P., Le, C., and Noll, B., Numerical Investigation of Different Modes of Internal Circulation in Spherical Drops: Fluid Dynamics and Mass/Heat Transfer, Int. J. Multiphase Flow, 2017, vol. 95, pp. 54–70. Edelmann, C.A., Clercq, P., Le, C., and Noll, B., Numerical Investigation of Different Modes of Internal Circulation in Spherical Drops: Fluid Dynamics and Mass/Heat Transfer, Int. J. Multiphase Flow, 2017, vol. 95, pp. 54–70.
36.
Zurück zum Zitat Ninomiya, N. and Yasuda, K., Visualization and PIV Measurement of the Flow around and inside of a Falling Droplet, J. Visualization, 2006, vol. 9, no. 3, pp. 257–264. Ninomiya, N. and Yasuda, K., Visualization and PIV Measurement of the Flow around and inside of a Falling Droplet, J. Visualization, 2006, vol. 9, no. 3, pp. 257–264.
37.
Zurück zum Zitat Zhou, Q., Erkan, N., and Okamoto, K., Simultaneous Measurement of Temperature and Flow Distributions inside Pendant Water Droplets Evaporating in an Upward Air Stream Using Temperature-Sensitive Particles, Nucl. Eng. Design, 2019, vol. 345, pp. 157–165. Zhou, Q., Erkan, N., and Okamoto, K., Simultaneous Measurement of Temperature and Flow Distributions inside Pendant Water Droplets Evaporating in an Upward Air Stream Using Temperature-Sensitive Particles, Nucl. Eng. Design, 2019, vol. 345, pp. 157–165.
38.
Zurück zum Zitat Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of Heat Transfer Theory), Moscow: Atomizdat, 1979. Kutateladze, S.S., Osnovy teorii teploobmena (Fundamentals of Heat Transfer Theory), Moscow: Atomizdat, 1979.
39.
Zurück zum Zitat Batchelor, G., Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 1967. Batchelor, G., Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 1967.
Metadaten
Titel
Convection in Water Droplet in the Presence of External Air Motion
verfasst von
S. Ya. Misyura
V. S. Morozov
O. A. Gobyzov
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2020
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S181023282003008X

Weitere Artikel der Ausgabe 3/2020

Journal of Engineering Thermophysics 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.