Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2022

01.09.2022

Thermophysical Properties of Magnesium in Solid and Liquid States

verfasst von: R. N. Abdullaev, A. Sh. Agazhanov, A. R. Khairulin, D. A. Samoshkin, S. V. Stankus

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A number of thermophysical properties of pure magnesium are measured with high accuracy over a wide range of temperatures in the solid and liquid states. The enthalpy and isobaric heat capacity of magnesium are investigated over a temperature range of 431–1176 K with application of a massive high-temperature isothermal drop calorimeter. The estimated error in the data on enthalpy and heat capacity is 0.2% and 0.5%, respectively. The enthalpy of fusion of magnesium is 8455 ± 22 J/mol. The thermal conductivity and thermal diffusivity of solid and liquid magnesium are measured in the range of 291 K to 1221 K by the laser flash method. The errors in the thermal conductivity measurements are 2–5% for the solid state and 4–6% for the liquid one. It is shown that the thermal conductivity and thermal diffusivity of magnesium decrease about 1.5 times during melting. Our results are compared with data in the literature and with calculations based on the Wiedemann–Franz law. Approximation equations are constructed and tables of recommended values of the investigated properties of magnesium are presented for a temperature range of 291–1221 K for the condensed state.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou, J.M., Yang, Y., Magne, L., and Wang, G., Determination of Thermal Conductivity of Magnesium-Alloys, J. Cent. South Univ. Technol., 2001, vol. 8, pp. 60–63.CrossRef Zhou, J.M., Yang, Y., Magne, L., and Wang, G., Determination of Thermal Conductivity of Magnesium-Alloys, J. Cent. South Univ. Technol., 2001, vol. 8, pp. 60–63.CrossRef
2.
Zurück zum Zitat Ying, T., Zheng, M.Y., Li, Z.T., and Qiao, X.G., Thermal Conductivity of As-Cast and As-Extruded Binary Mg–Al Alloys, J. Alloys Compd., 2014, vol. 608, pp. 19–24.CrossRef Ying, T., Zheng, M.Y., Li, Z.T., and Qiao, X.G., Thermal Conductivity of As-Cast and As-Extruded Binary Mg–Al Alloys, J. Alloys Compd., 2014, vol. 608, pp. 19–24.CrossRef
3.
Zurück zum Zitat Ying, T., Chi, H., Zheng, M., Li, Z., and Uher, C., Low-Temperature Electrical Resistivity and Thermal Conductivity of Binary Magnesium Alloys, Acta Mater., 2014, vol. 80, pp. 288–295.CrossRef Ying, T., Chi, H., Zheng, M., Li, Z., and Uher, C., Low-Temperature Electrical Resistivity and Thermal Conductivity of Binary Magnesium Alloys, Acta Mater., 2014, vol. 80, pp. 288–295.CrossRef
4.
Zurück zum Zitat Powell, R.W., Hickman, M.J., and Tye, R.P., The Thermal and Electrical Conductivity of Magnesium and Some Magnesium Alloys, Metallurgia, 1964, vol. 70, pp. 159–163. Powell, R.W., Hickman, M.J., and Tye, R.P., The Thermal and Electrical Conductivity of Magnesium and Some Magnesium Alloys, Metallurgia, 1964, vol. 70, pp. 159–163.
5.
Zurück zum Zitat Mannchen, W., Heat Conductivity, Electrical Conductivity and the Lorenz Number for a Few Light Metal Alloys, Z. Metallk., 1931, vol. 23, pp. 193–196. Mannchen, W., Heat Conductivity, Electrical Conductivity and the Lorenz Number for a Few Light Metal Alloys, Z. Metallk., 1931, vol. 23, pp. 193–196.
6.
Zurück zum Zitat Schofield, F.H., The Thermal and Electrical Conductivities of Some Pure Metals, Proc. Roy. Soc., 1925, vol. 107, pp. 206–227. Schofield, F.H., The Thermal and Electrical Conductivities of Some Pure Metals, Proc. Roy. Soc., 1925, vol. 107, pp. 206–227.
7.
Zurück zum Zitat Abdullaev, R.N., Khairulin, R.A., Kozlovskii, Yu.M., Agazhanov, A.Sh., and Stankus, S.V., Density of Magnesium and Magnesium-Lithium Alloys in Solid and Liquid States, Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 507–514.CrossRef Abdullaev, R.N., Khairulin, R.A., Kozlovskii, Yu.M., Agazhanov, A.Sh., and Stankus, S.V., Density of Magnesium and Magnesium-Lithium Alloys in Solid and Liquid States, Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 507–514.CrossRef
8.
Zurück zum Zitat Pathak, P.D. and Desai, R.J., Thermal Expansion of Magnesium and Temperature Variation of Negative Second Moment of Its Frequency Spectrum, Phys. Status Solidi A, 1981, vol. 66, pp. 179–182.ADSCrossRef Pathak, P.D. and Desai, R.J., Thermal Expansion of Magnesium and Temperature Variation of Negative Second Moment of Its Frequency Spectrum, Phys. Status Solidi A, 1981, vol. 66, pp. 179–182.ADSCrossRef
9.
Zurück zum Zitat Lu, X.G., Selleby, M., and Sundman, B., Assessments of Molar Volume and Thermal Expansion for Selected bcc, fcc and hcp Metallic Elements, Calphad, 2005, vol. 29, pp. 68–89.CrossRef Lu, X.G., Selleby, M., and Sundman, B., Assessments of Molar Volume and Thermal Expansion for Selected bcc, fcc and hcp Metallic Elements, Calphad, 2005, vol. 29, pp. 68–89.CrossRef
10.
Zurück zum Zitat McGonigal, P.J., Kirshenbaum, A.D., and Grosse, A.V., The Liquid Temperature Range, Density, and Critical Constants of Magnesium, J. Phys. Chem., 1962, vol. 66, pp. 737–740.CrossRef McGonigal, P.J., Kirshenbaum, A.D., and Grosse, A.V., The Liquid Temperature Range, Density, and Critical Constants of Magnesium, J. Phys. Chem., 1962, vol. 66, pp. 737–740.CrossRef
11.
Zurück zum Zitat Stankus, S.V. and Khairulin, R.A., Temperature and Interphase Changes in the Density of Magnesium in the Solid and Liquid States, Tsvetn. Met., 1990, vol. 9, pp. 65–67. Stankus, S.V. and Khairulin, R.A., Temperature and Interphase Changes in the Density of Magnesium in the Solid and Liquid States, Tsvetn. Met., 1990, vol. 9, pp. 65–67.
12.
Zurück zum Zitat Kúdela, S., Jr., Rudajevová, A., and Kúdela, S., Anisotropy of Thermal Expansion in Mg and Mg4Li-Matrix Composites Reinforced by Short Alumina Fibers, Mater. Sci. Eng. A, 2007, vol. 462, pp. 239–242.CrossRef Kúdela, S., Jr., Rudajevová, A., and Kúdela, S., Anisotropy of Thermal Expansion in Mg and Mg4Li-Matrix Composites Reinforced by Short Alumina Fibers, Mater. Sci. Eng. A, 2007, vol. 462, pp. 239–242.CrossRef
13.
Zurück zum Zitat Awbery, J.H. and Griffiths, E., The Latent Heat of Fusion of Some Metals, Proc. Phys. Soc., 1925, vol. 38, pp. 378–398. Awbery, J.H. and Griffiths, E., The Latent Heat of Fusion of Some Metals, Proc. Phys. Soc., 1925, vol. 38, pp. 378–398.
14.
Zurück zum Zitat Stull, D.R. and McDonald, R.A., The Enthalpy and Heat Capacity of Magnesium and of Type 430 Stainless Steel from 700 to 1100°K, J. Am. Chem. Soc., 1955, vol. 77, pp. 5293–5293.CrossRef Stull, D.R. and McDonald, R.A., The Enthalpy and Heat Capacity of Magnesium and of Type 430 Stainless Steel from 700 to 1100°K, J. Am. Chem. Soc., 1955, vol. 77, pp. 5293–5293.CrossRef
15.
Zurück zum Zitat Eastman, E.D., Williams, A.M., and Young, T.F., The Specific Heats of Magnesium, Calcium, Zinc, Aluminum and Silver at High Temperatures, J. Am. Chem. Soc., 1924, vol. 46, pp. 1178–1183.CrossRef Eastman, E.D., Williams, A.M., and Young, T.F., The Specific Heats of Magnesium, Calcium, Zinc, Aluminum and Silver at High Temperatures, J. Am. Chem. Soc., 1924, vol. 46, pp. 1178–1183.CrossRef
16.
Zurück zum Zitat McDonald, R.A., Enthalpy, Heat Capacity, and Heat of Fusion of Magnesium from 404° to 1300° K, J. Chem. Eng. Data, 1967, vol. 12, pp. 131–132.CrossRef McDonald, R.A., Enthalpy, Heat Capacity, and Heat of Fusion of Magnesium from 404° to 1300° K, J. Chem. Eng. Data, 1967, vol. 12, pp. 131–132.CrossRef
17.
Zurück zum Zitat Totskii, E.E. and Tonkonogov, V.B., The Saturation Vapor Pressure of Liquid Magnesium and the Thermodynamic Functions for the Condensed Phase, High Temp., 1985, vol. 23, pp. 547–551. Totskii, E.E. and Tonkonogov, V.B., The Saturation Vapor Pressure of Liquid Magnesium and the Thermodynamic Functions for the Condensed Phase, High Temp., 1985, vol. 23, pp. 547–551.
18.
Zurück zum Zitat Shpil’rain, E.E., Kagan, D.N., Salikhov, T.P., and Ul’yanov, S.N., The Specific Heat of Magnesium in the Solid and Molten Phases up to 1600 K, Teplofiz. Vys. Temp., 1984, vol. 22, pp. 619–621. Shpil’rain, E.E., Kagan, D.N., Salikhov, T.P., and Ul’yanov, S.N., The Specific Heat of Magnesium in the Solid and Molten Phases up to 1600 K, Teplofiz. Vys. Temp., 1984, vol. 22, pp. 619–621.
19.
Zurück zum Zitat Touloukian, Y.S., Kirby R.K., and Taylor, R.E., Thermophysical Properties of Matter, vol. 12, New York: Plenum, 1975. Touloukian, Y.S., Kirby R.K., and Taylor, R.E., Thermophysical Properties of Matter, vol. 12, New York: Plenum, 1975.
20.
Zurück zum Zitat Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter, vol. 10, Washington: Plenum, 1973. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter, vol. 10, Washington: Plenum, 1973.
21.
Zurück zum Zitat Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter, vol. 1, New York: Plenum, 1970. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter, vol. 1, New York: Plenum, 1970.
22.
Zurück zum Zitat Zinoviev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Metallurgiya, 1989. Zinoviev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Metallurgiya, 1989.
23.
Zurück zum Zitat Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv, tom 3 (Thermodynamic Properties of Individual Substances, vol. 3), Moscow: Nauka, 1981. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv, tom 3 (Thermodynamic Properties of Individual Substances, vol. 3), Moscow: Nauka, 1981.
24.
Zurück zum Zitat Novikova, S.I., Teplovoe rashirenie tevrdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974. Novikova, S.I., Teplovoe rashirenie tevrdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.
25.
Zurück zum Zitat Shpil’rain, E.E., Kagan, D.N., and Ul’yanov, S.N., Termodinamicheskie funktsii elementov podgruppy shchelochnozemel’nykh metallov (Thermodynamic Functions of Elements of the Subgroup of Alkaline Earth Metals (Heat Capacity, Enthalpy, Entropy, Gibbs Energy)), Moscow: IVTAN SSSR, 1986. Shpil’rain, E.E., Kagan, D.N., and Ul’yanov, S.N., Termodinamicheskie funktsii elementov podgruppy shchelochnozemel’nykh metallov (Thermodynamic Functions of Elements of the Subgroup of Alkaline Earth Metals (Heat Capacity, Enthalpy, Entropy, Gibbs Energy)), Moscow: IVTAN SSSR, 1986.
26.
Zurück zum Zitat Alcock, C.B., Chase, M.W., and Itkin, V.P., Thermodynamic Properties of the Group IIA Elements, J. Phys. Chem. Ref. Data, 1993, vol. 22, pp. 1–85.ADSCrossRef Alcock, C.B., Chase, M.W., and Itkin, V.P., Thermodynamic Properties of the Group IIA Elements, J. Phys. Chem. Ref. Data, 1993, vol. 22, pp. 1–85.ADSCrossRef
27.
Zurück zum Zitat Li, S., Yang, X., Hou, J., and Du, W., A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloys, 2020, vol. 8, pp. 78–90.CrossRef Li, S., Yang, X., Hou, J., and Du, W., A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloys, 2020, vol. 8, pp. 78–90.CrossRef
28.
Zurück zum Zitat Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements, J. Phys. Chem. Ref. Data, 1972, vol. 1, pp. 279–421.ADSCrossRef Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements, J. Phys. Chem. Ref. Data, 1972, vol. 1, pp. 279–421.ADSCrossRef
29.
Zurück zum Zitat Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements: A Comprehensive Review, J. Phys. Chem. Ref. Data, 1974, vol. 3, pp. 1–796. Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements: A Comprehensive Review, J. Phys. Chem. Ref. Data, 1974, vol. 3, pp. 1–796.
30.
Zurück zum Zitat NIST Alloy Data Web Application; https://trc.nist.gov/MetalsAlloyUI/. NIST Alloy Data Web Application; https://​trc.​nist.​gov/​MetalsAlloyUI/​.​
31.
Zurück zum Zitat SpringerMaterials–Properties of Materials; https://materials.springer.com/. SpringerMaterials–Properties of Materials; https://​materials.​springer.​com/​.​
32.
Zurück zum Zitat March, N.H. and Tosi, M.P., Introduction to Liquid State Physics, Singapore: World Scientific, 2002.CrossRef March, N.H. and Tosi, M.P., Introduction to Liquid State Physics, Singapore: World Scientific, 2002.CrossRef
33.
Zurück zum Zitat Tankeshwar, K. and March, N.H., Relation between Electrical and Thermal Conductivities in Charged Condensed Phases, Phys. Chem. Liq., 1996, vol. 31, pp. 39–47.CrossRef Tankeshwar, K. and March, N.H., Relation between Electrical and Thermal Conductivities in Charged Condensed Phases, Phys. Chem. Liq., 1996, vol. 31, pp. 39–47.CrossRef
34.
Zurück zum Zitat Ziman, J., Principles of the Theory of Solids, Cambridge University Press, 1965.MATH Ziman, J., Principles of the Theory of Solids, Cambridge University Press, 1965.MATH
35.
Zurück zum Zitat Cook, J.G. and Van der Meer, M.P., The Transport Properties of Ca, Sr and Ba, J. Phys. F: Met. Phys., 1973, vol. 3, pp. L130–L133.ADSCrossRef Cook, J.G. and Van der Meer, M.P., The Transport Properties of Ca, Sr and Ba, J. Phys. F: Met. Phys., 1973, vol. 3, pp. L130–L133.ADSCrossRef
36.
Zurück zum Zitat Song, J., She, J., Chen, D., and Pan, F., Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloys, 2020, vol. 8, pp. 1–41.CrossRef Song, J., She, J., Chen, D., and Pan, F., Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloys, 2020, vol. 8, pp. 1–41.CrossRef
37.
Zurück zum Zitat Wu, R., Yan, Y., Wang, G., Murr, L.E., Han, W., Zhang, Z., and Zhang, M., Recent Progress in Magnesium–Lithium Alloys, Int. Mater. Rev., 2015, vol. 22, pp. 65–100.ADSCrossRef Wu, R., Yan, Y., Wang, G., Murr, L.E., Han, W., Zhang, Z., and Zhang, M., Recent Progress in Magnesium–Lithium Alloys, Int. Mater. Rev., 2015, vol. 22, pp. 65–100.ADSCrossRef
38.
Zurück zum Zitat Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Lithium, Sodium and Potassium in The Liquid State, Phys. Chem. Liq., 2020, vol. 58, pp. 760–768.CrossRef Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Lithium, Sodium and Potassium in The Liquid State, Phys. Chem. Liq., 2020, vol. 58, pp. 760–768.CrossRef
39.
Zurück zum Zitat Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Liquid Cesium in the Temperature Interval of 302–973 K, High Temp.–High Press., 2018, vol. 47, pp. 311–321. Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Liquid Cesium in the Temperature Interval of 302–973 K, High Temp.–High Press., 2018, vol. 47, pp. 311–321.
40.
Zurück zum Zitat Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., Experimental Investigation of the Enthalpy and Heat Capacity of Liquid Cesium, J. Eng. Therm., 2018, vol. 27, pp. 30–35.CrossRef Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., Experimental Investigation of the Enthalpy and Heat Capacity of Liquid Cesium, J. Eng. Therm., 2018, vol. 27, pp. 30–35.CrossRef
41.
Zurück zum Zitat Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Conductivity and Thermal Diffusivity of Samarium in the Temperature Range of 293–1773 K, Thermophys. Aeromech., 2018, vol. 25, pp. 735–740.ADSCrossRef Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Conductivity and Thermal Diffusivity of Samarium in the Temperature Range of 293–1773 K, Thermophys. Aeromech., 2018, vol. 25, pp. 735–740.ADSCrossRef
42.
Zurück zum Zitat Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Diffusivity and Thermal Conductivity of Neodymium in the Temperature Range 293 to 1773 K, J. Eng. Therm., 2018, vol. 27, pp. 399–404.CrossRef Samoshkin, D.A., Savchenko, I.V., Stankus, S.V., and Agazhanov, A.Sh., Thermal Diffusivity and Thermal Conductivity of Neodymium in the Temperature Range 293 to 1773 K, J. Eng. Therm., 2018, vol. 27, pp. 399–404.CrossRef
43.
Zurück zum Zitat Nayeb-Hashemi, A.A. and Clark, J.B., Mg–Mo (Magnesium-Molybdenum), in Binary Alloy Phase Diagrams, Massalski, T.B., Ed., 2nd ed., Materials Park, Ohio: ASM International, 1990, pp. 2520–2522. Nayeb-Hashemi, A.A. and Clark, J.B., Mg–Mo (Magnesium-Molybdenum), in Binary Alloy Phase Diagrams, Massalski, T.B., Ed., 2nd ed., Materials Park, Ohio: ASM International, 1990, pp. 2520–2522.
44.
Zurück zum Zitat Saboungi, M.-L. and Blander, M., Electromotive Force Measurements in Molten Lithium-Magnesium Alloys, J. Electrochem. Soc., 1975, vol. 122, pp. 1631–1634.ADSCrossRef Saboungi, M.-L. and Blander, M., Electromotive Force Measurements in Molten Lithium-Magnesium Alloys, J. Electrochem. Soc., 1975, vol. 122, pp. 1631–1634.ADSCrossRef
45.
Zurück zum Zitat Taylor, R.H., Curtarolo, S., and Hart, G.L.W., Guiding the Experimental Discovery of Magnesium Alloys, Phys. Rev. B, 2011, vol. 84, pp. 084101-1–084101-17.ADSCrossRef Taylor, R.H., Curtarolo, S., and Hart, G.L.W., Guiding the Experimental Discovery of Magnesium Alloys, Phys. Rev. B, 2011, vol. 84, pp. 084101-1–084101-17.ADSCrossRef
46.
Zurück zum Zitat Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., A High-Temperature Drop Calorimeter for Studying Substances and Materials in the Solid and Liquid States, Instrum. Exp. Tech., 2017, vol. 60, pp. 608–613.CrossRef Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., A High-Temperature Drop Calorimeter for Studying Substances and Materials in the Solid and Liquid States, Instrum. Exp. Tech., 2017, vol. 60, pp. 608–613.CrossRef
47.
Zurück zum Zitat Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., The Caloric Properties of Liquid Bismuth, High Temp., 2018, vol. 56, pp. 33–37.CrossRef Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., The Caloric Properties of Liquid Bismuth, High Temp., 2018, vol. 56, pp. 33–37.CrossRef
48.
Zurück zum Zitat Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv, tom 4 (Thermodynamic Properties of Individual Substances, vol. 4), Moscow: Nauka, 1982. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv, tom 4 (Thermodynamic Properties of Individual Substances, vol. 4), Moscow: Nauka, 1982.
49.
Zurück zum Zitat Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, vol. 32, pp. 1679–1684.ADSCrossRef Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, vol. 32, pp. 1679–1684.ADSCrossRef
50.
Zurück zum Zitat Cape, J.A. and Lehman, G.W., Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity, J. Appl. Phys., 1963, vol. 34, pp. 1909–1913.ADSCrossRef Cape, J.A. and Lehman, G.W., Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity, J. Appl. Phys., 1963, vol. 34, pp. 1909–1913.ADSCrossRef
51.
Zurück zum Zitat Blumm, J. and Opfermann, J., Improvement of the Mathematical Modeling of Flash Measurements, High Temp.–High Press., 2002, vol. 34, pp. 515–521. Blumm, J. and Opfermann, J., Improvement of the Mathematical Modeling of Flash Measurements, High Temp.–High Press., 2002, vol. 34, pp. 515–521.
52.
Zurück zum Zitat Stankus, S.V. and Savchenko, I.V., Laser Flash Method for Measurement of Liquid Metals Heat Transfer Coefficients, Thermophys. Aeromech., 2009, vol. 16, pp. 585–592.ADSCrossRef Stankus, S.V. and Savchenko, I.V., Laser Flash Method for Measurement of Liquid Metals Heat Transfer Coefficients, Thermophys. Aeromech., 2009, vol. 16, pp. 585–592.ADSCrossRef
53.
Zurück zum Zitat Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity and Thermal Diffusivity of Li-Pb Eutectic in the Temperature Range of 293–1273 K, Fusion Eng. Des., 2020, vol. 152, pp. 111456-1–111456-5.CrossRef Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity and Thermal Diffusivity of Li-Pb Eutectic in the Temperature Range of 293–1273 K, Fusion Eng. Des., 2020, vol. 152, pp. 111456-1–111456-5.CrossRef
54.
Zurück zum Zitat Peletski, V.E., Chekhovskoi, V.Ya., and Latyev, L.N., Teplofizicheskie svoistva molibdena i ego splavov (Thermophysical Properties of Molybdenum and Its Alloys), Moscow: Metallurgy, 1990. Peletski, V.E., Chekhovskoi, V.Ya., and Latyev, L.N., Teplofizicheskie svoistva molibdena i ego splavov (Thermophysical Properties of Molybdenum and Its Alloys), Moscow: Metallurgy, 1990.
55.
Zurück zum Zitat Savchenko, I.V., Measurement of the Thermal Diffusivity of Solid Materials by the Laser Flash Method, in Materials of the 12th All-Russian Scientific Conference of Physics Students and Young Scientists (VNKSF-12), ASF Russia, Ekaterinburg, Novosibirsk, 2006, p. 287. Savchenko, I.V., Measurement of the Thermal Diffusivity of Solid Materials by the Laser Flash Method, in Materials of the 12th All-Russian Scientific Conference of Physics Students and Young Scientists (VNKSF-12), ASF Russia, Ekaterinburg, Novosibirsk, 2006, p. 287.
56.
Zurück zum Zitat Getling, A.V., Rayleigh–Benard Convection: Structures and Dynamics, Singapore: World Scientific, 1998.MATHCrossRef Getling, A.V., Rayleigh–Benard Convection: Structures and Dynamics, Singapore: World Scientific, 1998.MATHCrossRef
57.
Zurück zum Zitat Ho, C.Y., Ackerman, M.W., Wu, K.Y., Havill, T.N., Bogaard, R.H., Matula, R.A., Oh, S.G., and James, H.M., Electrical Resistivity of Ten Selected Binary Alloy Systems, J. Phys. Chem. Ref. Data, 1983, vol. 12, pp. 183–322.ADSCrossRef Ho, C.Y., Ackerman, M.W., Wu, K.Y., Havill, T.N., Bogaard, R.H., Matula, R.A., Oh, S.G., and James, H.M., Electrical Resistivity of Ten Selected Binary Alloy Systems, J. Phys. Chem. Ref. Data, 1983, vol. 12, pp. 183–322.ADSCrossRef
Metadaten
Titel
Thermophysical Properties of Magnesium in Solid and Liquid States
verfasst von
R. N. Abdullaev
A. Sh. Agazhanov
A. R. Khairulin
D. A. Samoshkin
S. V. Stankus
Publikationsdatum
01.09.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S181023282203002X

Weitere Artikel der Ausgabe 3/2022

Journal of Engineering Thermophysics 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.