Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2023

01.03.2023

On Mathematical Modeling of Convection in the Upper Mantle of Earth

verfasst von: V. V. Chervov, G. G. Chernykh

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Convective processes in Earth’s mantle are due to the gravity action on the mantle material in conjunction with thermal differentiation of the interior. A key issue in studying the interior of the planet is elucidation of the causes and conditions that determine the spatiotemporal evolution of convection in Earth’s mantle, since it is this characteristic that largely determines the kinematics of lithospheric plates and the geological history of the evolution of terrestrial regions. Numerical models of 3D convection in Earth’s mantle are presented in a number of works [124l (a more detailed bibliography can also be found there). …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tychkov, S.A., Konvektsiya v mantii i dinamika platformennykh oblastei (Convection in Mantle and Dynamics of Platform Areas), Novosibirsk: Nauka, 1984. Tychkov, S.A., Konvektsiya v mantii i dinamika platformennykh oblastei (Convection in Mantle and Dynamics of Platform Areas), Novosibirsk: Nauka, 1984.
2.
Zurück zum Zitat Trubitsyn, V.P., Bobrov, A.M., and Kubyshkin, V.V., The Influence of Continental Lithosphere on the Structure of Mantle Thermal Convection, Fiz. Zemli, 1993, no. 5, pp. 3–11. Trubitsyn, V.P., Bobrov, A.M., and Kubyshkin, V.V., The Influence of Continental Lithosphere on the Structure of Mantle Thermal Convection, Fiz. Zemli, 1993, no. 5, pp. 3–11.
3.
Zurück zum Zitat Busse, F.H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M., Sotin, C., and Travis, B., 3D Convection at Infinite Prandtl Number in Cartesian Geometry—A Benchmark Comparison, Geophys. Astrophys. Fluid Dyn., 1993, vol. 75, pp. 39–59.ADSCrossRef Busse, F.H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M., Sotin, C., and Travis, B., 3D Convection at Infinite Prandtl Number in Cartesian Geometry—A Benchmark Comparison, Geophys. Astrophys. Fluid Dyn., 1993, vol. 75, pp. 39–59.ADSCrossRef
4.
Zurück zum Zitat Rykov, V.V. and Trubitsyn, V.P., 3D Mantle Convection Model with Moving Continents, Vych. Seismol., 1994, no. 27, pp. 21–41. Rykov, V.V. and Trubitsyn, V.P., 3D Mantle Convection Model with Moving Continents, Vych. Seismol., 1994, no. 27, pp. 21–41.
5.
Zurück zum Zitat Trubitsyn, V.P., Belavina, Yu.F., and Rykov, V.V., Thermal Convection in Mantle with Variable Viscosity and Continental Plate with Finite Dimensions, Fiz. Zemli, 1994, no. 7, pp. 5–17. Trubitsyn, V.P., Belavina, Yu.F., and Rykov, V.V., Thermal Convection in Mantle with Variable Viscosity and Continental Plate with Finite Dimensions, Fiz. Zemli, 1994, no. 7, pp. 5–17.
6.
Zurück zum Zitat Bobrov, A.M. and Trubitsyn, V.P., Times of Restructuring of Mantle Flows beneath Continents, Fiz. Zemli, 1995, no. 7, pp. 5–13. Bobrov, A.M. and Trubitsyn, V.P., Times of Restructuring of Mantle Flows beneath Continents, Fiz. Zemli, 1995, no. 7, pp. 5–13.
7.
Zurück zum Zitat Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using Vorticity and Vector Potential, Vych. Tekhnol., 2002, vol. 7, no. 1, pp. 114–125.MathSciNet Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using Vorticity and Vector Potential, Vych. Tekhnol., 2002, vol. 7, no. 1, pp. 114–125.MathSciNet
8.
Zurück zum Zitat Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using a Sequence of Meshes, Vych. Tekhnol., 2002, vol. 7, no. 3, pp. 85–92.MathSciNetMATH Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using a Sequence of Meshes, Vych. Tekhnol., 2002, vol. 7, no. 3, pp. 85–92.MathSciNetMATH
9.
Zurück zum Zitat Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of Thermal Convection in the Earth’s Mantle, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 596–601.MATH Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of Thermal Convection in the Earth’s Mantle, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 596–601.MATH
10.
Zurück zum Zitat Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of 3D Convection in the Earth Mantle, Russ. J. Numer. Math. Model., 2005, vol. 20, no. 5, pp. 483–500.CrossRefMATH Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of 3D Convection in the Earth Mantle, Russ. J. Numer. Math. Model., 2005, vol. 20, no. 5, pp. 483–500.CrossRefMATH
11.
Zurück zum Zitat Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., A Numerical Model of Three-Dimensional Convection, Izv. Phys. Solid Earth, 2005, vol. 41, no. 5, pp. 383–398.MATH Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., A Numerical Model of Three-Dimensional Convection, Izv. Phys. Solid Earth, 2005, vol. 41, no. 5, pp. 383–398.MATH
12.
Zurück zum Zitat Chervov, V.V., Modeling of 3D Convection in the Earth Mantle, Using Implicit Method of Splitting in Physical Processes, Vych. Tekhnol., 2006, vol. 11, no. 4, pp. 73–86.MATH Chervov, V.V., Modeling of 3D Convection in the Earth Mantle, Using Implicit Method of Splitting in Physical Processes, Vych. Tekhnol., 2006, vol. 11, no. 4, pp. 73–86.MATH
13.
Zurück zum Zitat Chervov, V.V., Modeling of 3D Convection in the Earth Mantle, Using Implicit Method of Weakly (Artifical) Compressibility, Vych. Tekhnol., 2009, vol. 14, no. 3, pp. 86–92.MATH Chervov, V.V., Modeling of 3D Convection in the Earth Mantle, Using Implicit Method of Weakly (Artifical) Compressibility, Vych. Tekhnol., 2009, vol. 14, no. 3, pp. 86–92.MATH
14.
Zurück zum Zitat Chervov, V.V., Chernykh, G.G., Bushenkova, N.A., and Koulakov, I.Y., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth beneath Eurasia Lithosphere, Vych. Tekhnol., 2014, vol. 19, no. 5, pp. 101–114. Chervov, V.V., Chernykh, G.G., Bushenkova, N.A., and Koulakov, I.Y., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth beneath Eurasia Lithosphere, Vych. Tekhnol., 2014, vol. 19, no. 5, pp. 101–114.
15.
Zurück zum Zitat Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth beneath Eurasia Lithosphere, J. Eng. Therm., 2014, vol. 23, no. 2, pp. 105–111.CrossRef Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth beneath Eurasia Lithosphere, J. Eng. Therm., 2014, vol. 23, no. 2, pp. 105–111.CrossRef
16.
Zurück zum Zitat Bobrov, A.M. and Baranov, A.A., Model of Mantle Convection with Non-Newtonian Rheology and Phase Transitions: Structure of Flows and Stress Fields, Fiz. Zemli, 2016, vol. 52, no. 1, pp. 133–148. Bobrov, A.M. and Baranov, A.A., Model of Mantle Convection with Non-Newtonian Rheology and Phase Transitions: Structure of Flows and Stress Fields, Fiz. Zemli, 2016, vol. 52, no. 1, pp. 133–148.
17.
Zurück zum Zitat Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W., High Accuracy Mantle Convection through Modern Numerical Methods. II: Realistic Models and Problems, Geophys. J. Int., 2017, vol. 210, no. 2, pp. 833–851.ADSCrossRef Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W., High Accuracy Mantle Convection through Modern Numerical Methods. II: Realistic Models and Problems, Geophys. J. Int., 2017, vol. 210, no. 2, pp. 833–851.ADSCrossRef
18.
Zurück zum Zitat Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Convection in the Zone of Spreading and Subduction, J. Eng. Therm., 2019, vol. 28, no. 1, pp. 14–25.CrossRef Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Convection in the Zone of Spreading and Subduction, J. Eng. Therm., 2019, vol. 28, no. 1, pp. 14–25.CrossRef
19.
Zurück zum Zitat Trubitsyn, A.P. and Trubitsyn, V.P., Temperature Distribution in the Earth’s Mantle, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 905–909. Trubitsyn, A.P. and Trubitsyn, V.P., Temperature Distribution in the Earth’s Mantle, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 905–909.
20.
Zurück zum Zitat Chuvaev, A.V., Baranov, A.A., and Bobrov, A.M., Numerical Modelling of Mantle Convection in the Earth Using Cloud Technologies, Comput. Technol., 2020, vol. 25, no. 2, pp. 103–117. Chuvaev, A.V., Baranov, A.A., and Bobrov, A.M., Numerical Modelling of Mantle Convection in the Earth Using Cloud Technologies, Comput. Technol., 2020, vol. 25, no. 2, pp. 103–117.
21.
Zurück zum Zitat Trubitsyn, A.P. and Trubitsyn, V.P., The Heat Balance in the Earth, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 746–750. Trubitsyn, A.P. and Trubitsyn, V.P., The Heat Balance in the Earth, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 746–750.
22.
Zurück zum Zitat Lobkovsky, L.I., Ramazanov, M.M., and Kotelkin, V.D., Convection Related to Subduction Zone and Application of the Model to Investigate the Cretaceous-Cenozoic Geodynamics of Central East Asia and the Arctic, Geodyn. Tectonophys., 2021, vol. 12, no. 3, pp. 455–470.CrossRef Lobkovsky, L.I., Ramazanov, M.M., and Kotelkin, V.D., Convection Related to Subduction Zone and Application of the Model to Investigate the Cretaceous-Cenozoic Geodynamics of Central East Asia and the Arctic, Geodyn. Tectonophys., 2021, vol. 12, no. 3, pp. 455–470.CrossRef
23.
Zurück zum Zitat Lobkovskii, L.I. and Ramazanov, M.M., Investigation of Convection in the Upper Mantle Connected Thermomechanically with the Subduction Zone and Its Geodynamic Application to the Arctic Region and North East Asia, Fluid Dyn., 2021, vol. 56, no. 3, pp. 433–444.ADSMathSciNetCrossRef Lobkovskii, L.I. and Ramazanov, M.M., Investigation of Convection in the Upper Mantle Connected Thermomechanically with the Subduction Zone and Its Geodynamic Application to the Arctic Region and North East Asia, Fluid Dyn., 2021, vol. 56, no. 3, pp. 433–444.ADSMathSciNetCrossRef
24.
Zurück zum Zitat Chervov, V.V., Bushenkova, N.A., and Chernykh, G.G., Tectonic Depressions on the East-European and Siberian Platforms: Numerical Modeling of Convection beneath the Eurasian Continent, Geodin. Tektonofiz., 2021, vol. 12, no. 1, pp. 84–99; https://doi.org/10.5800/GT-2021-12-1-0514.CrossRef Chervov, V.V., Bushenkova, N.A., and Chernykh, G.G., Tectonic Depressions on the East-European and Siberian Platforms: Numerical Modeling of Convection beneath the Eurasian Continent, Geodin. Tektonofiz., 2021, vol. 12, no. 1, pp. 84–99; https://​doi.​org/​10.​5800/​GT-2021-12-1-0514.​CrossRef
25.
Zurück zum Zitat Lobkovskii, L.I., Geodinamika zon spredinga, sabduktsii i dvukhyarusnaya tektonika plit (Geodynamics of Spreading and Subduction Zones and Two-Level Tectonics of Plates), Moscow: Nauka, 1988. Lobkovskii, L.I., Geodinamika zon spredinga, sabduktsii i dvukhyarusnaya tektonika plit (Geodynamics of Spreading and Subduction Zones and Two-Level Tectonics of Plates), Moscow: Nauka, 1988.
26.
Zurück zum Zitat Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin A.A., Glubinnaya geodinamika (Depth Geodynamics), 2nd ed., Novosibirsk: SO RAN, 2001. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin A.A., Glubinnaya geodinamika (Depth Geodynamics), 2nd ed., Novosibirsk: SO RAN, 2001.
27.
Zurück zum Zitat Kirdyashkin, A.A. and Kirdyashkin, A.G., Forces Acting on a Subducting Oceanic Plate, Geotecton., 2014, vol. 48, no. 1, pp. 54–67.ADSCrossRef Kirdyashkin, A.A. and Kirdyashkin, A.G., Forces Acting on a Subducting Oceanic Plate, Geotecton., 2014, vol. 48, no. 1, pp. 54–67.ADSCrossRef
28.
Zurück zum Zitat Korobeynikov, S.N., Reverdatto, V.V., Polyansky, O.P., Sverdlova, V.G., and Babichev, A.V., Computer Simulation of Underthrust and Subduction at Collision of Plates, Sib. Zh. Vych. Mat., 2009, vol. 12, no. 1, pp. 71–90.MATH Korobeynikov, S.N., Reverdatto, V.V., Polyansky, O.P., Sverdlova, V.G., and Babichev, A.V., Computer Simulation of Underthrust and Subduction at Collision of Plates, Sib. Zh. Vych. Mat., 2009, vol. 12, no. 1, pp. 71–90.MATH
29.
Zurück zum Zitat Korobeynikov, S.N., Reverdatto, V.V., Polyansky, O.P., Sverdlova, V.G., and Babichev, A.V., The Influence of the Choice of a Rheological Law on the Computer Simulation Results of Slab Subduction, Sib. Zh. Vych. Mat., 2011, vol. 14, no. 1, pp. 71–90. Korobeynikov, S.N., Reverdatto, V.V., Polyansky, O.P., Sverdlova, V.G., and Babichev, A.V., The Influence of the Choice of a Rheological Law on the Computer Simulation Results of Slab Subduction, Sib. Zh. Vych. Mat., 2011, vol. 14, no. 1, pp. 71–90.
30.
Zurück zum Zitat Fleitout, L. and Yuen, D.A., Steady State, Secondary Convection beneath Lithospheric Plates with Temperature- and Pressure-Dependent Viscosity, J. Geophys. Res., 1984, vol. 89, no. B11, pp. 9227–9244.ADSCrossRef Fleitout, L. and Yuen, D.A., Steady State, Secondary Convection beneath Lithospheric Plates with Temperature- and Pressure-Dependent Viscosity, J. Geophys. Res., 1984, vol. 89, no. B11, pp. 9227–9244.ADSCrossRef
31.
Zurück zum Zitat Aplonov, S.V. Geodinamika: Uchebnik (Geodynamics: Textbook), St. Petersburg: S. Peter. Univ., 2001. Aplonov, S.V. Geodinamika: Uchebnik (Geodynamics: Textbook), St. Petersburg: S. Peter. Univ., 2001.
32.
Zurück zum Zitat Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical Modeling in Continuum Mechanics), Moscow: Nauka, 1984. Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical Modeling in Continuum Mechanics), Moscow: Nauka, 1984.
33.
Zurück zum Zitat Tolstykh, A.I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki (Compact Difference Schemes and Their Application to Aero-Hydrodynamic Problems), Moscow: Nauka, 1990. Tolstykh, A.I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki (Compact Difference Schemes and Their Application to Aero-Hydrodynamic Problems), Moscow: Nauka, 1990.
Metadaten
Titel
On Mathematical Modeling of Convection in the Upper Mantle of Earth
verfasst von
V. V. Chervov
G. G. Chernykh
Publikationsdatum
01.03.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823010034

Weitere Artikel der Ausgabe 1/2023

Journal of Engineering Thermophysics 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.