Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 1/2019

01.01.2019

The Verification of the Calculation of Stationary Subsonic Flows and the Presentation of Results

verfasst von: V. V. Vyshinsky, G. B. Sizykh

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The principle of pressure maximum is proved for a stationary three-dimensional vortex ideal gas flow (without the assumption of barotropicity). Based on the fact that in regions where the solution is modeled with a high degree of accuracy within the boundary value problem for the Euler equations, the consequences of the Euler equations must also hold, and the obtained subsonic principle is proposed to be used for verification of the numerical solutions of the boundary value problems for Euler equations for an ideal gas and for the Navier-Stokes equations for viscous gas. The conditions of the maximum principle include the value of the Q-parameter, whose surface level image is currently widely used to visualize the flow pattern. The proposed principle of the maximum pressure reveals the meaning of the surface Q = 0. It divides the flow region into the subdomain Q > 0 in which there can be no local pressure maximum and subdomain Q < 0 in which there can be no local pressure minimum. A similar meaning of parameter Q was known for incompressible fluid (H. Rowland, 1880; G. Hamel, 1936). The expression for the Q-parameter contains only the first derivatives of the velocity components, which allows determining the sign (+/–) of Q even for numerical solutions obtained by the low-order methods. An example of the numerical solution’s verification using the subsonic principle of the pressure maximum is presented. Analysis of the results of the numerical calculation of the flow around a moving aircraft carrier in the presence of atmospheric winds showed that if the calculation results are used for the simulation of complex flight modes and analyze the state of the atmosphere from the point of view of safe air traffic, visualizing the flow pattern by Q = const surfaces is not informative. In particular, these surfaces do not reflect the true picture of the wind shear perceived by the aircraft directly entering it. To verify the numerical method, it is sufficient to provide only a surface Q = 0 which has a clear physical meaning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Rowland, “On the motion of a perfect incompressible fluid when no bodies are present,” Am. J. Math. 3, 226–268 (1880).MathSciNetCrossRefMATH H. Rowland, “On the motion of a perfect incompressible fluid when no bodies are present,” Am. J. Math. 3, 226–268 (1880).MathSciNetCrossRefMATH
2.
Zurück zum Zitat H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1895).MATH H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1895).MATH
3.
Zurück zum Zitat G. Hamel, “Ein allgemeiner Satz uber den Druck bei der Bewegung volumbestandiger Flussigkeiten,” Monatsh. Math. Phys. 43, 345–363 (1936).MathSciNetCrossRefMATH G. Hamel, “Ein allgemeiner Satz uber den Druck bei der Bewegung volumbestandiger Flussigkeiten,” Monatsh. Math. Phys. 43, 345–363 (1936).MathSciNetCrossRefMATH
4.
Zurück zum Zitat J. Serrin, Mathematical Principles of Classical Fluid Mechanics (Springer, Berlin, Gottingen, Heidelberg, 1959).CrossRef J. Serrin, Mathematical Principles of Classical Fluid Mechanics (Springer, Berlin, Gottingen, Heidelberg, 1959).CrossRef
5.
6.
Zurück zum Zitat M. Shiffman, “On the existence of subsonic flows of a compressible fluid,” J. Rational Mech. Anal. 1, 605–652 (1952).MathSciNetMATH M. Shiffman, “On the existence of subsonic flows of a compressible fluid,” J. Rational Mech. Anal. 1, 605–652 (1952).MathSciNetMATH
7.
Zurück zum Zitat L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics (Wiley, New York, 1958).MATH L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics (Wiley, New York, 1958).MATH
8.
Zurück zum Zitat L. G. Loytsyansky, Mechanics of Liquids and Gases (Pergamon, Oxford, 1966; Gostekhizdat, Moscow, 1950). L. G. Loytsyansky, Mechanics of Liquids and Gases (Pergamon, Oxford, 1966; Gostekhizdat, Moscow, 1950).
9.
Zurück zum Zitat D. Gilbarg and M. Shiffman, “On bodies achieving extreme value of the critical Mach number. I,” J. Ration. Mech. Anal. 3, 209–230 (1954).MathSciNetMATH D. Gilbarg and M. Shiffman, “On bodies achieving extreme value of the critical Mach number. I,” J. Ration. Mech. Anal. 3, 209–230 (1954).MathSciNetMATH
10.
Zurück zum Zitat A. N. Burmistrov, V. P. Kovalev, and G. B. Sizykh, “Maximum principle for solving an equation of elliptic type with unbounded coefficients,” Tr. MFTI 6 (4), 97–102 (2014). A. N. Burmistrov, V. P. Kovalev, and G. B. Sizykh, “Maximum principle for solving an equation of elliptic type with unbounded coefficients,” Tr. MFTI 6 (4), 97–102 (2014).
11.
Zurück zum Zitat G. B. Sizykh, “A sign of the presence of a deceleration point in a plane irrotational perfect gas flow,” TRUDY MFTI 7 (2), 108–112 (2015). G. B. Sizykh, “A sign of the presence of a deceleration point in a plane irrotational perfect gas flow,” TRUDY MFTI 7 (2), 108–112 (2015).
12.
Zurück zum Zitat V. N. Golubkin and G. B. Sizykh, “Maximum principle for Bernoulli function,” TsAGI Sci. J. 46, 485–490 (2015). V. N. Golubkin and G. B. Sizykh, “Maximum principle for Bernoulli function,” TsAGI Sci. J. 46, 485–490 (2015).
13.
Zurück zum Zitat E. Hopf, “Elementare Bemerkungen uber die Losungen partieller Differentialgleichungen zweiter Ordnung vom Elliptischen Typus,” Sitzungsber. Preuss. Akad. Wissensch. 19, 147–152 (1927).MATH E. Hopf, “Elementare Bemerkungen uber die Losungen partieller Differentialgleichungen zweiter Ordnung vom Elliptischen Typus,” Sitzungsber. Preuss. Akad. Wissensch. 19, 147–152 (1927).MATH
14.
Zurück zum Zitat C. Miranda, Equazioni alle derivate parziali di tipo ellittico (Springer, Berlin, Gottingen, Heidelberg, 1955).MATH C. Miranda, Equazioni alle derivate parziali di tipo ellittico (Springer, Berlin, Gottingen, Heidelberg, 1955).MATH
15.
Zurück zum Zitat A. I. Besportochnyy, A. N. Burmistrov, and G. B. Sizykh, “Variant of the Hopf theorem,” Tr. MFTI 8 (1), 115–122 (2016). A. I. Besportochnyy, A. N. Burmistrov, and G. B. Sizykh, “Variant of the Hopf theorem,” Tr. MFTI 8 (1), 115–122 (2016).
16.
Zurück zum Zitat V. V. Vyshinskiy, V. K. Ivanov, and A. V. Terpugov, “Simulation of complex flight regimes on aerobatic stands, taking into account atmospheric turbulence,” Tr. MFTI 7 (1), 36–42 (2015). V. V. Vyshinskiy, V. K. Ivanov, and A. V. Terpugov, “Simulation of complex flight regimes on aerobatic stands, taking into account atmospheric turbulence,” Tr. MFTI 7 (1), 36–42 (2015).
17.
Zurück zum Zitat V. V. Vyshinskii, “The program of generation of initial-boundary conditions in modeling the flow of landscape (WINDGUST),” State Registration Certificate of Computer Software No. 2 015 616 444 (2015). V. V. Vyshinskii, “The program of generation of initial-boundary conditions in modeling the flow of landscape (WINDGUST),” State Registration Certificate of Computer Software No. 2 015 616 444 (2015).
18.
Zurück zum Zitat J. C. R. Hunt, A. A. Wray, and P. Moin, “Center for turbulence research,” in Proceedings of the Summer Program, 1988, pp. 193–208. J. C. R. Hunt, A. A. Wray, and P. Moin, “Center for turbulence research,” in Proceedings of the Summer Program, 1988, pp. 193–208.
20.
21.
Zurück zum Zitat M. Lesieur, P. Begou, E. Briand, A. Danet, F. Delcayre, and J. L. Aider, “Coherent-vortex dynamics in large-eddy simulations of turbulence,” J. Turbulence 4, 1–16 (2003).MathSciNetCrossRefMATH M. Lesieur, P. Begou, E. Briand, A. Danet, F. Delcayre, and J. L. Aider, “Coherent-vortex dynamics in large-eddy simulations of turbulence,” J. Turbulence 4, 1–16 (2003).MathSciNetCrossRefMATH
22.
Zurück zum Zitat C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Coherent structures in unsteady swirling jet flow,” Exp. Fluids 40, 267–276 (2006).CrossRef C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Coherent structures in unsteady swirling jet flow,” Exp. Fluids 40, 267–276 (2006).CrossRef
23.
Zurück zum Zitat I. S. Anufriev, Yu. A. Anikin, E. Yu. Shadrin, and O. V. Sharypov, “Diagnostics of swirl flow spatial structure in a vortex furnace model,” Thermophys. Aeromech. 21, 775–778 (2014).CrossRef I. S. Anufriev, Yu. A. Anikin, E. Yu. Shadrin, and O. V. Sharypov, “Diagnostics of swirl flow spatial structure in a vortex furnace model,” Thermophys. Aeromech. 21, 775–778 (2014).CrossRef
Metadaten
Titel
The Verification of the Calculation of Stationary Subsonic Flows and the Presentation of Results
verfasst von
V. V. Vyshinsky
G. B. Sizykh
Publikationsdatum
01.01.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 1/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219010162

Weitere Artikel der Ausgabe 1/2019

Mathematical Models and Computer Simulations 1/2019 Zur Ausgabe

Premium Partner