Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 4/2019

01.07.2019

On the Cabaret Scheme for Incompressible Fluid Flow Problems with a Free Surface

verfasst von: V. A. Gushchin, V. G. Kondakov

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a new approach for solving problems of vortex structures’ interaction with a free surface. The second-order accuracy finite-difference scheme based on the well-known CABARET scheme is suggested for incompressible viscous fluid with a free surface. The CABARET method in the case of an incompressible medium additionally solves the problem of the velocity field’s solenoidation. Solving such a problem implies solving a system of linear equations with respect to the pressure variable and then taking the pressure gradient into account when calculating equations of motion. Solving the system of linear equations is a separate related problem that is not included in the description of the CABARET method, and this paper presents only the problem statement without specifying a specific method for solving the system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. M. Belotserkovskii, V. A. Gushchin, and V. N. Konshin, “The splitting method for investigating flows of a stratified liquid with a free surface,” USSR Comput. Math. Math. Phys. 27, 181–191 (1987).CrossRef O. M. Belotserkovskii, V. A. Gushchin, and V. N. Konshin, “The splitting method for investigating flows of a stratified liquid with a free surface,” USSR Comput. Math. Math. Phys. 27, 181–191 (1987).CrossRef
2.
Zurück zum Zitat C. W. Hirt, J. L. Cook, and T. D. Butler, “A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface,” J. Comput. Phys. 5, 103–124 (1970).CrossRefMATH C. W. Hirt, J. L. Cook, and T. D. Butler, “A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface,” J. Comput. Phys. 5, 103–124 (1970).CrossRefMATH
3.
Zurück zum Zitat T. Buttler, “Development of LINC method,” in Proceedings of the 2nd International Conference on Numerical Methods in Fluid Dynamics, Sept. 15–19, 1979, Univ. of California, Berkeley, Ed. by M. Holt, Lecture Notes in Physics (Springer, Berlin, Heidelberg, New York, 1971). T. Buttler, “Development of LINC method,” in Proceedings of the 2nd International Conference on Numerical Methods in Fluid Dynamics, Sept. 15–19, 1979, Univ. of California, Berkeley, Ed. by M. Holt, Lecture Notes in Physics (Springer, Berlin, Heidelberg, New York, 1971).
4.
Zurück zum Zitat S. Hirt, “Abitrary Lagrange-Euler numerical method,” in Proceedings of the 2nd International Conference on Numerical Methods in Fluid Dynamics, Sept. 15–19, 1979, Univ. of California, Berkeley, Ed. by M. Holt, Lecture Notes in Physics (Springer, Berlin, Heidelberg, New York, 1971). S. Hirt, “Abitrary Lagrange-Euler numerical method,” in Proceedings of the 2nd International Conference on Numerical Methods in Fluid Dynamics, Sept. 15–19, 1979, Univ. of California, Berkeley, Ed. by M. Holt, Lecture Notes in Physics (Springer, Berlin, Heidelberg, New York, 1971).
5.
Zurück zum Zitat R. K. C. Chan, “A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with sharp interfaces,” J. Comput. Phys. 17, 311–331 (1975).CrossRefMATH R. K. C. Chan, “A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with sharp interfaces,” J. Comput. Phys. 17, 311–331 (1975).CrossRefMATH
6.
Zurück zum Zitat C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary Lagrangian-Eulerian computing method for all flow speeds,” J. Comput. Phys. 14, 227–253 (1974).CrossRefMATH C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary Lagrangian-Eulerian computing method for all flow speeds,” J. Comput. Phys. 14, 227–253 (1974).CrossRefMATH
8.
Zurück zum Zitat V. A. Gushchin and V. N. Konshin, “Computational aspects of the splitting method for incompressible flow with a free surface,” J. Comput. Fluids 21, 345–353 (1992).CrossRefMATH V. A. Gushchin and V. N. Konshin, “Computational aspects of the splitting method for incompressible flow with a free surface,” J. Comput. Fluids 21, 345–353 (1992).CrossRefMATH
9.
Zurück zum Zitat V. A. Gushchin, A. V. Kostomarov, P. V. Matyushin, and E. R. Pavlyukova, “Direct numerical simulation of the transitional separated fluid flows around a sphere and a circular cylinder,” J. Wind Eng. Ind. Aerodyn. 90, 341–358 (2002).CrossRef V. A. Gushchin, A. V. Kostomarov, P. V. Matyushin, and E. R. Pavlyukova, “Direct numerical simulation of the transitional separated fluid flows around a sphere and a circular cylinder,” J. Wind Eng. Ind. Aerodyn. 90, 341–358 (2002).CrossRef
10.
Zurück zum Zitat V. A. Gushchin and P. V. Matyushin, “Vortex formation mechanisms in the wake behind a sphere for 200 < Re < 380,” Fluid Dyn. 41, 795–809 (2006).CrossRefMATH V. A. Gushchin and P. V. Matyushin, “Vortex formation mechanisms in the wake behind a sphere for 200 < Re < 380,” Fluid Dyn. 41, 795–809 (2006).CrossRefMATH
11.
Zurück zum Zitat V. A. Gushchin and P. V. Matyushin, “Numerical simulation and visualization of vortical structure transformation in the flow past a sphere at an increasing degree of stratification,” Comput. Math. Math. Phys. 51, 251–263 (2011).MathSciNetCrossRefMATH V. A. Gushchin and P. V. Matyushin, “Numerical simulation and visualization of vortical structure transformation in the flow past a sphere at an increasing degree of stratification,” Comput. Math. Math. Phys. 51, 251–263 (2011).MathSciNetCrossRefMATH
12.
Zurück zum Zitat V. A. Gushchin and P. V. Matyushin, “Simulation and study of stratified flows around finite bodies,” Comput. Math. Math. Phys. 56, 1034–1047 (2016).MathSciNetCrossRefMATH V. A. Gushchin and P. V. Matyushin, “Simulation and study of stratified flows around finite bodies,” Comput. Math. Math. Phys. 56, 1034–1047 (2016).MathSciNetCrossRefMATH
14.
Zurück zum Zitat V. M. Goloviznin and A. A. Samarskii, “Finite difference approximation of convective transport equation with space splitting time derivative,” Mat. Model. 10 (1), 86–100 (1998).MathSciNetMATH V. M. Goloviznin and A. A. Samarskii, “Finite difference approximation of convective transport equation with space splitting time derivative,” Mat. Model. 10 (1), 86–100 (1998).MathSciNetMATH
15.
Zurück zum Zitat V. M. Goloviznin and A. A. Samarskii, “Some characteristics of finite difference scheme 'cabaret',” Mat. Model. 10 (1), 101–116 (1998).MathSciNetMATH V. M. Goloviznin and A. A. Samarskii, “Some characteristics of finite difference scheme 'cabaret',” Mat. Model. 10 (1), 101–116 (1998).MathSciNetMATH
16.
Zurück zum Zitat V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-characteristic schemes with separated conservative and flux variables,” Mat. Model. 15 (9), 29–48 2003.MathSciNetMATH V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-characteristic schemes with separated conservative and flux variables,” Mat. Model. 15 (9), 29–48 2003.MathSciNetMATH
17.
Zurück zum Zitat V. M. Goloviznin, “Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation,” Mat. Model. 18 (11), 14–30 (2006).MathSciNet V. M. Goloviznin, “Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation,” Mat. Model. 18 (11), 14–30 (2006).MathSciNet
18.
Zurück zum Zitat T. Sarpkaya and P. Suthon, “The interaction of a vortex couple with a free surface,” J. Exp. Fluids, No. 11, 205–217 (1991). T. Sarpkaya and P. Suthon, “The interaction of a vortex couple with a free surface,” J. Exp. Fluids, No. 11, 205–217 (1991).
19.
Zurück zum Zitat W. T. Tsai and D. K. P. Yue, “Effects of soluble and insoluble surfactant on laminar interactions of vortical flows with a free surface,” J. Fluid Mech. 289, 315–349 (1995).CrossRefMATH W. T. Tsai and D. K. P. Yue, “Effects of soluble and insoluble surfactant on laminar interactions of vortical flows with a free surface,” J. Fluid Mech. 289, 315–349 (1995).CrossRefMATH
20.
Zurück zum Zitat G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 1970). G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 1970).
21.
Zurück zum Zitat M. A. Lavrentev and B. V. Shabat, Problems of Hydrodynamics and their Mathematical Models (Nauka, Moscow, 1977) [in Russian]. M. A. Lavrentev and B. V. Shabat, Problems of Hydrodynamics and their Mathematical Models (Nauka, Moscow, 1977) [in Russian].
22.
Zurück zum Zitat J. J. Stoker, Water Waves (Interscience, New York, London, 1957).MATH J. J. Stoker, Water Waves (Interscience, New York, London, 1957).MATH
23.
Zurück zum Zitat L. Orlanski, “A simple boundary condition for unbounded hyperbolic flows,” J. Comput. Phys. 21, 251–269 (1976).CrossRefMATH L. Orlanski, “A simple boundary condition for unbounded hyperbolic flows,” J. Comput. Phys. 21, 251–269 (1976).CrossRefMATH
24.
Zurück zum Zitat V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New Algorithms for Computational Fluid Dynamics for Multiprocessor Computing Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian]. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New Algorithms for Computational Fluid Dynamics for Multiprocessor Computing Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
Metadaten
Titel
On the Cabaret Scheme for Incompressible Fluid Flow Problems with a Free Surface
verfasst von
V. A. Gushchin
V. G. Kondakov
Publikationsdatum
01.07.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 4/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219040082

Weitere Artikel der Ausgabe 4/2019

Mathematical Models and Computer Simulations 4/2019 Zur Ausgabe

Premium Partner