Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 5/2019

01.09.2019

Combined Numerical Model of Tsunami

verfasst von: M. A. Nosov, S. V. Kolesov

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical model describing the dynamics of the surface gravity waves and acoustic waves induced in the ocean by small dynamic deformations of the bottom is developed. The model is based on the linear potential theory. The model represents a combination of two dynamically coupled blocks: deep-water and shallow. The deep-water block solves a three-dimensional problem of potential wave theory in the sigma-spherical coordinates; the shallow block solves a two-dimensional problem of shallow water theory in the spherical coordinates. The results of testing the numerical model using the analytical solution of the problem for the flat horizontal bottom are presented. A comparative analysis of the simulation results of tsunamis on November 15, 2006 and January 13, 2007 on the Central Kuril Islands with the use of the newly developed and conventional long-wave models is performed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. V. Titov, F. I. Gonzalez, H. O. Mofjeld, and A. J. Venturato, “NOAA time Seattle tsunami mapping project: procedures, data sources, and products,” NOAA Tech. Memorandum OAR PMEL-124 (2003). V. V. Titov, F. I. Gonzalez, H. O. Mofjeld, and A. J. Venturato, “NOAA time Seattle tsunami mapping project: procedures, data sources, and products,” NOAA Tech. Memorandum OAR PMEL-124 (2003).
2.
Zurück zum Zitat F. Imamura, A. C. Yalciner, and G. Ozyurt, Tsunami Modelling Manual (TUNAMI Model) (2006). F. Imamura, A. C. Yalciner, and G. Ozyurt, Tsunami Modelling Manual (TUNAMI Model) (2006).
3.
Zurück zum Zitat A. I. Zaytsev, A. G. Chernov, A. C. Yalciner, E. N. Pelinovsky, and A. A. Kurkin, MANUAL Tsunami Simulation/Visualization Code NAMI DANCE, vers. 4.9 (2010). A. I. Zaytsev, A. G. Chernov, A. C. Yalciner, E. N. Pelinovsky, and A. A. Kurkin, MANUAL Tsunami Simulation/Visualization Code NAMI DANCE, vers. 4.9 (2010).
4.
Zurück zum Zitat O. V. Bulatov and T. G. Elizarova, “Regularized shallow water equations for numerical simulation of flows with a moving shoreline,” Comput. Math. Math. Phys. 56, 661–679 (2016).MathSciNetMATHCrossRef O. V. Bulatov and T. G. Elizarova, “Regularized shallow water equations for numerical simulation of flows with a moving shoreline,” Comput. Math. Math. Phys. 56, 661–679 (2016).MathSciNetMATHCrossRef
5.
Zurück zum Zitat M. A. Nosov, “Tsunami waves of seismic origin: the modern state of knowledge,” Izv. Atmos. Ocean. Phys. 50, 474–484 (2014).CrossRef M. A. Nosov, “Tsunami waves of seismic origin: the modern state of knowledge,” Izv. Atmos. Ocean. Phys. 50, 474–484 (2014).CrossRef
6.
Zurück zum Zitat F. I. González and E. A. Kulikov, “Tsunami dispersion observed in the deep ocean,” in Tsunamis in the World (Springer, Netherlands, 1993), pp. 7–16. F. I. González and E. A. Kulikov, “Tsunami dispersion observed in the deep ocean,” in Tsunamis in the World (Springer, Netherlands, 1993), pp. 7–16.
7.
Zurück zum Zitat S. Glimsdal, G. K. Pedersen, C. B. Harbitz, and F. Løvholt, “Dispersion of tsunamis: does it really matter?,” Nat. Hazards Earth Syst. Sci. 13, 1507–1526 (2013).CrossRef S. Glimsdal, G. K. Pedersen, C. B. Harbitz, and F. Løvholt, “Dispersion of tsunamis: does it really matter?,” Nat. Hazards Earth Syst. Sci. 13, 1507–1526 (2013).CrossRef
8.
Zurück zum Zitat S. Watada, S. Kusumoto, and K. Satake, “Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth,” J. Geophys. Res. Solid Earth 119, 4287–4310 (2014).CrossRef S. Watada, S. Kusumoto, and K. Satake, “Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth,” J. Geophys. Res. Solid Earth 119, 4287–4310 (2014).CrossRef
9.
Zurück zum Zitat B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, Cham, Heidelberg, New York, Dordrecht, London, 2016).CrossRef B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, Cham, Heidelberg, New York, Dordrecht, London, 2016).CrossRef
10.
Zurück zum Zitat P. A. Madsen, R. Murray, and O. R. Sørensen, “A new form of the Boussinesq equations with improved linear dispersion characteristics,” Coast. Eng. 15, 371–388 (1991).CrossRef P. A. Madsen, R. Murray, and O. R. Sørensen, “A new form of the Boussinesq equations with improved linear dispersion characteristics,” Coast. Eng. 15, 371–388 (1991).CrossRef
11.
Zurück zum Zitat F. Løvholt, G. Pedersen, and S. Glimsdal, “Coupling of dispersive tsunami propagation and shallow water coastal response,” Open Oceanogr. J. 4, 71-82 (2010). F. Løvholt, G. Pedersen, and S. Glimsdal, “Coupling of dispersive tsunami propagation and shallow water coastal response,” Open Oceanogr. J. 4, 71-82 (2010).
12.
Zurück zum Zitat F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli, “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation,” Ocean Model. 43–44, 36–51 (2012).CrossRef F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli, “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation,” Ocean Model. 43–44, 36–51 (2012).CrossRef
13.
Zurück zum Zitat J. Kim, G. K. Pedersen, F. Løvholt, and R. J. LeVeque, “A Boussinesq type extension of the GeoClaw model-a study of wave breaking phenomena applying dispersive long wave models,” Coast. Eng. 122, 75–86 (2017).CrossRef J. Kim, G. K. Pedersen, F. Løvholt, and R. J. LeVeque, “A Boussinesq type extension of the GeoClaw model-a study of wave breaking phenomena applying dispersive long wave models,” Coast. Eng. 122, 75–86 (2017).CrossRef
14.
Zurück zum Zitat M. A. Nosov, “Tsunami generation in compressible ocean,” Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos. 24, 437–441 (1999).CrossRef M. A. Nosov, “Tsunami generation in compressible ocean,” Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos. 24, 437–441 (1999).CrossRef
16.
Zurück zum Zitat M. Ewing, I. Tolstoy, and F. Press, “Proposed use of the T phase in tsunami warning systems,” Bull. Seismol. Soc. Am. 40, 53–58 (1950). M. Ewing, I. Tolstoy, and F. Press, “Proposed use of the T phase in tsunami warning systems,” Bull. Seismol. Soc. Am. 40, 53–58 (1950).
17.
Zurück zum Zitat E. A. Okal, P. J. Alasset, O. Hyvernaud, and F. Schindelé, “The deficient T waves of tsunami earthquakes,” Geophys. J. Int. 152, 416–432 (2003).CrossRef E. A. Okal, P. J. Alasset, O. Hyvernaud, and F. Schindelé, “The deficient T waves of tsunami earthquakes,” Geophys. J. Int. 152, 416–432 (2003).CrossRef
18.
Zurück zum Zitat M. A. Nosov, S. V. Kolesov, A. V. Ostroukhova, A. B. Alekseev, and B. W. Levin, “Elastic oscillations of the water layer in a tsunami source,” Dokl. Earth Sci. 404, 1097–1100 (2005). M. A. Nosov, S. V. Kolesov, A. V. Ostroukhova, A. B. Alekseev, and B. W. Levin, “Elastic oscillations of the water layer in a tsunami source,” Dokl. Earth Sci. 404, 1097–1100 (2005).
19.
Zurück zum Zitat M. A. Nosov and S. V. Kolesov, “Elastic oscillations of water column in the 2003 Tokachi-oki tsunami source: in-situ measurements and 3-D numerical modelling,” Nat. Hazards Earth Syst. Sci. 7, 243–249 (2007).CrossRef M. A. Nosov and S. V. Kolesov, “Elastic oscillations of water column in the 2003 Tokachi-oki tsunami source: in-situ measurements and 3-D numerical modelling,” Nat. Hazards Earth Syst. Sci. 7, 243–249 (2007).CrossRef
20.
Zurück zum Zitat W. Li, H. Yeh, K. Hirata, and T. Baba, “Ocean-bottom pressure variations during the 2003 Tokachi-Oki Earthquake,” in Nonlinear Wave Dynamics, Ed. by P. Lynett (World Scientic, Singapore, 2009), pp. 109–126. W. Li, H. Yeh, K. Hirata, and T. Baba, “Ocean-bottom pressure variations during the 2003 Tokachi-Oki Earthquake,” in Nonlinear Wave Dynamics, Ed. by P. Lynett (World Scientic, Singapore, 2009), pp. 109–126.
21.
Zurück zum Zitat T. Ohmachi, H. Tsukiyama, and H. Matsumoto, “Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting,” Bull. Seismol. Soc. Am. 91, 1898–1909 (2001).CrossRef T. Ohmachi, H. Tsukiyama, and H. Matsumoto, “Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting,” Bull. Seismol. Soc. Am. 91, 1898–1909 (2001).CrossRef
22.
Zurück zum Zitat B. H. Choi, E. Pelinovsky, D. C. Kim, I. Didenkulova, and S. B. Woo, “Two- and three-dimensional computation of solitary wave runup on non-plane beach,” Nonlin. Processes Geophys. 15, 489–502 (2008).CrossRef B. H. Choi, E. Pelinovsky, D. C. Kim, I. Didenkulova, and S. B. Woo, “Two- and three-dimensional computation of solitary wave runup on non-plane beach,” Nonlin. Processes Geophys. 15, 489–502 (2008).CrossRef
23.
Zurück zum Zitat T. Maeda and T. Furumura, “FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion,” Pure Appl. Geophys. 170, 109–127 (2013).CrossRef T. Maeda and T. Furumura, “FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion,” Pure Appl. Geophys. 170, 109–127 (2013).CrossRef
24.
Zurück zum Zitat A. Kozelkov, A. Kurkin, E. Pelinovskii, and V. Kurulin, “Modeling the cosmogenic tsunami within the framework of the Navier-Stokes equations with sources of different types,” Fluid Dyn. 50, 306–313 (2015).MathSciNetMATHCrossRef A. Kozelkov, A. Kurkin, E. Pelinovskii, and V. Kurulin, “Modeling the cosmogenic tsunami within the framework of the Navier-Stokes equations with sources of different types,” Fluid Dyn. 50, 306–313 (2015).MathSciNetMATHCrossRef
26.
Zurück zum Zitat L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987; Nauka, Moscow, 1986). L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987; Nauka, Moscow, 1986).
27.
Zurück zum Zitat M. A. Nosov, A. V. Moshenceva, and S. V. Kolesov, “Horizontal motions of water in the vicinity of a tsunami source,” Pure Appl. Geophys. 170, 1647–1660 (2013).CrossRef M. A. Nosov, A. V. Moshenceva, and S. V. Kolesov, “Horizontal motions of water in the vicinity of a tsunami source,” Pure Appl. Geophys. 170, 1647–1660 (2013).CrossRef
28.
Zurück zum Zitat M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, “Displaced water volume, potential energy of initial elevation, and tsunami intensity: analysis of recent tsunami events,” Pure Appl. Geophys. 171, 3515–3525 (2014).CrossRef M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, “Displaced water volume, potential energy of initial elevation, and tsunami intensity: analysis of recent tsunami events,” Pure Appl. Geophys. 171, 3515–3525 (2014).CrossRef
29.
Zurück zum Zitat A. F. Blumberg and G. L. Mellor, “A description of a three-dimensional coastal ocean circulation model,” in Three-Dimensional Coastal Ocean Models, Ed. by N. Heaps, Vol. 4 of Coastal and Estuarine Series (Am. Geophys. Union, 1987), pp. 1–16. A. F. Blumberg and G. L. Mellor, “A description of a three-dimensional coastal ocean circulation model,” in Three-Dimensional Coastal Ocean Models, Ed. by N. Heaps, Vol. 4 of Coastal and Estuarine Series (Am. Geophys. Union, 1987), pp. 1–16.
30.
Zurück zum Zitat M. A. Nosov, “Adapting a mesh when simulating tsunami waves,” Math. Model. Comput. Simul. 10, 431–440 (2018).MathSciNetCrossRef M. A. Nosov, “Adapting a mesh when simulating tsunami waves,” Math. Model. Comput. Simul. 10, 431–440 (2018).MathSciNetCrossRef
31.
Zurück zum Zitat Y. Kaneda, H. Matsumoto, M. A. Nosov, and S. V. Kolesov, “Analysis of pressure and acceleration signals from the 2011 Tohoku earthquake observed by the DONET seafloor network,” J. Disaster Res. 12, 163-175 (2017).CrossRef Y. Kaneda, H. Matsumoto, M. A. Nosov, and S. V. Kolesov, “Analysis of pressure and acceleration signals from the 2011 Tohoku earthquake observed by the DONET seafloor network,” J. Disaster Res. 12, 163-175 (2017).CrossRef
32.
Zurück zum Zitat M. A. Nosov, “Tsunami generation in a compressible ocean by vertical bottom motions,” Izv., Atmos. Ocean. Phys. 36, 661–669 (2000). M. A. Nosov, “Tsunami generation in a compressible ocean by vertical bottom motions,” Izv., Atmos. Ocean. Phys. 36, 661–669 (2000).
33.
Zurück zum Zitat M. A. Nosov and S. V. Kolesov, “Optimal initial conditions for simulation of seismotectonic tsunamis,” Pure Appl. Geophys. 168, 1223–1237 (2011).CrossRef M. A. Nosov and S. V. Kolesov, “Optimal initial conditions for simulation of seismotectonic tsunamis,” Pure Appl. Geophys. 168, 1223–1237 (2011).CrossRef
34.
Zurück zum Zitat Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am. 75, 1135-1154 (1985). Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am. 75, 1135-1154 (1985).
35.
Zurück zum Zitat M. A. Nosov and K. A. Sementsov, “Calculation of the initial elevation at the tsunami source using analytical solutions,” Izv., Atmos. Ocean. Phys. 50, 539–546 (2014).CrossRef M. A. Nosov and K. A. Sementsov, “Calculation of the initial elevation at the tsunami source using analytical solutions,” Izv., Atmos. Ocean. Phys. 50, 539–546 (2014).CrossRef
Metadaten
Titel
Combined Numerical Model of Tsunami
verfasst von
M. A. Nosov
S. V. Kolesov
Publikationsdatum
01.09.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 5/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219050156

Weitere Artikel der Ausgabe 5/2019

Mathematical Models and Computer Simulations 5/2019 Zur Ausgabe

Premium Partner