Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 5/2020

01.09.2020

Calculating the Natural Atmospheric Radiation Using the General Circulation Model of the Earth’s Lower and Middle Atmosphere

verfasst von: B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper describes a block for calculating the Earth’s natural atmospheric radiation in the IR range developed for the general circulation model simulating the lower and middle atmosphere. This block uses the new parametrization of molecular absorption in the frequency range from 10 to 2000 cm−1 at the altitude ranging from the Earth’s surface to 76 km. The algorithm for constructing this parametrization takes into account the change in the gas composition of the atmosphere with altitude and has some other significant advantages. In addition, for the numerical solution of the radiation transfer equation, the discrete ordinate method and the computational zenith angle grid with the step of about nine degrees are used. The results of the line-by-line calculations of the Earth’s internal atmospheric radiation field are compared with the results of the calculations performed using parametrization, and it is shown that the presented parametrization is accurate in the lower and middle atmosphere both in the absence of clouds and in the presence of cloud layers with a significant optical thickness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu. M. Timofeev and A. V. Vasilev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian]. Yu. M. Timofeev and A. V. Vasilev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].
2.
Zurück zum Zitat K. Ya. Kondratev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian]. K. Ya. Kondratev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian].
3.
Zurück zum Zitat Kuo-Nan Lion, An Introduction to Atmospheric Radiation (Academic, New York, 1980). Kuo-Nan Lion, An Introduction to Atmospheric Radiation (Academic, New York, 1980).
4.
Zurück zum Zitat T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Labor. Znanii, Moscow, 2006) [in Russian]. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Labor. Znanii, Moscow, 2006) [in Russian].
5.
Zurück zum Zitat S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents,” Atmos. Ocean. Opt. 7 (3), 165–171 (1994). S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents,” Atmos. Ocean. Opt. 7 (3), 165–171 (1994).
6.
Zurück zum Zitat S. D. Tvorogov, L. I. Nesmelova, and O. B. Rodimova, “Representation of the transmission function by the series of exponents,” Atmos. Ocean. Opt. 9, 239–242 (1996). S. D. Tvorogov, L. I. Nesmelova, and O. B. Rodimova, “Representation of the transmission function by the series of exponents,” Atmos. Ocean. Opt. 9, 239–242 (1996).
7.
Zurück zum Zitat L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Calculation of transmission functions in near infrared region using series of exponents,” Atmos. Ocean. Opt. 10, 923–927 (1997). L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Calculation of transmission functions in near infrared region using series of exponents,” Atmos. Ocean. Opt. 10, 923–927 (1997).
8.
Zurück zum Zitat L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Application of exponential series to calculation of radiative fluxes in the molecular atmosphere,” Atmos. Ocean. Opt. 12, 735–739 (1999). L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Application of exponential series to calculation of radiative fluxes in the molecular atmosphere,” Atmos. Ocean. Opt. 12, 735–739 (1999).
9.
Zurück zum Zitat S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equation,” Atmos. Ocean. Opt. 12, 730–734 (1999). S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equation,” Atmos. Ocean. Opt. 12, 730–734 (1999).
10.
Zurück zum Zitat S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Ocean. Opt. 21, 797–803 (2008). S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Ocean. Opt. 21, 797–803 (2008).
11.
Zurück zum Zitat B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms,” Atmos. Ocean. Opt. 16, 244–246 (2003). B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms,” Atmos. Ocean. Opt. 16, 244–246 (2003).
12.
Zurück zum Zitat B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109, D02110 (2004). B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109, D02110 (2004).
13.
Zurück zum Zitat B. A. Fomin and P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res. 110, D02106 (2005). B. A. Fomin and P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res. 110, D02106 (2005).
14.
Zurück zum Zitat E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res. D 102, 663–682 (1997). E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res. D 102, 663–682 (1997).
15.
Zurück zum Zitat S. Cusack, J. M. Edwards, and J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model,” J. Geophys. Res. 104, 2051–2057 (1999). S. Cusack, J. M. Edwards, and J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model,” J. Geophys. Res. 104, 2051–2057 (1999).
16.
Zurück zum Zitat T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model,” Appl. Opt. 39, 4869–4878 (2000). T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model,” Appl. Opt. 39, 4869–4878 (2000).
17.
Zurück zum Zitat R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. (2010). R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. (2010).
18.
Zurück zum Zitat B. N. Chetverushkin, Mathematical Modeling of Problems of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].MATH B. N. Chetverushkin, Mathematical Modeling of Problems of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].MATH
19.
Zurück zum Zitat A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8, 93–107 (2016).MathSciNet A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8, 93–107 (2016).MathSciNet
20.
Zurück zum Zitat B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth,” Math. Models Comput. Simul. 10, 176–185 (2018).MathSciNetMATH B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth,” Math. Models Comput. Simul. 10, 176–185 (2018).MathSciNetMATH
21.
Zurück zum Zitat I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth’s lower and middle atmosphere,” Atmos. Ocean. Opt. 31, 582–589 (2018). I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth’s lower and middle atmosphere,” Atmos. Ocean. Opt. 31, 582–589 (2018).
22.
Zurück zum Zitat L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Rad. Transfer 130, 4–50 (2013). L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Rad. Transfer 130, 4–50 (2013).
23.
Zurück zum Zitat E. J. Mlawer et al., “Development and recent evaluation of the MT CKD model of continuum absorption,” Phylos. Trans. R. Soc. 370, 2520–2556 (2012). E. J. Mlawer et al., “Development and recent evaluation of the MT CKD model of continuum absorption,” Phylos. Trans. R. Soc. 370, 2520–2556 (2012).
24.
Zurück zum Zitat N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55, 1713–1726 (2015).MathSciNetMATH N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55, 1713–1726 (2015).MathSciNetMATH
25.
Zurück zum Zitat A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1978) [in Russian]. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1978) [in Russian].
26.
Zurück zum Zitat I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “The effect of optically thick cloud layers on heating of the atmosphere self emission,” Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 14 (5), 100-108 (2017). I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “The effect of optically thick cloud layers on heating of the atmosphere self emission,” Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 14 (5), 100-108 (2017).
27.
Zurück zum Zitat R. A. McClatchey, H.-J. Bolle, and K. Ya. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” World Climate Research Programme WCP112, WMO/TD-No. 24 (Int. Assoc. Meteorol. Atmos. Phys., Radiation Commission, 1986). R. A. McClatchey, H.-J. Bolle, and K. Ya. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” World Climate Research Programme WCP112, WMO/TD-No. 24 (Int. Assoc. Meteorol. Atmos. Phys., Radiation Commission, 1986).
28.
Zurück zum Zitat V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, and B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems,” Comput. Math. Math. Phys. 56, 987–995 (2016).MathSciNetMATH V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, and B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems,” Comput. Math. Math. Phys. 56, 987–995 (2016).MathSciNetMATH
Metadaten
Titel
Calculating the Natural Atmospheric Radiation Using the General Circulation Model of the Earth’s Lower and Middle Atmosphere
verfasst von
B. N. Chetverushkin
I. V. Mingalev
E. A. Fedotova
K. G. Orlov
V. M. Chechetkin
V. S. Mingalev
Publikationsdatum
01.09.2020
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 5/2020
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S207004822005004X

Weitere Artikel der Ausgabe 5/2020

Mathematical Models and Computer Simulations 5/2020 Zur Ausgabe

Premium Partner