Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 5/2020

01.09.2020

Model of Radiation-Induced Thermomechanical Effects in Heterogeneous Finely Dispersed Materials

verfasst von: V. A. Egorova, F. N. Voronin, M. E. Zhukovskiy, M. B. Markov, A. I. Potapenko, R. V. Uskov, D. S. Boykov

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A complex model for supercomputing the parameters of radiation-induced thermomechanical fields in heterogeneous media of a complex dispersed structure is developed. A technique for calculating the parameters of the photon-electron cascade generated in the object by the interaction of radiation with matter is constructed. A geometric model of the medium with a direct resolution of its microstructure is worked out. The model of the detecting system for the statistical evaluation of the energy deposit of radiation is part of the geometric description of the medium. The continuum mechanics equations taken in the Euler form of the conservation laws are the base for calculating thermomechanical processes. The results of trial simulations in the form of the calculated thermomechanical fields are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. E. Zhukovskiy and R. V. Uskov, “Hybrid paralleling of the algorithms of radiation cascade transport modelling,” Math. Models Comput. Simul. 7, 601–610 (2015).MathSciNetCrossRef M. E. Zhukovskiy and R. V. Uskov, “Hybrid paralleling of the algorithms of radiation cascade transport modelling,” Math. Models Comput. Simul. 7, 601–610 (2015).MathSciNetCrossRef
2.
Zurück zum Zitat M. E. Zhukovskiy and R. V. Uskov, “Modeling of interaction between gamma rays and matter on hybrid computers,” Mat. Model. 23 (7), 20–32 (2011).MathSciNetMATH M. E. Zhukovskiy and R. V. Uskov, “Modeling of interaction between gamma rays and matter on hybrid computers,” Mat. Model. 23 (7), 20–32 (2011).MathSciNetMATH
3.
Zurück zum Zitat M. E. Zhukovskiy, S. V. Podolyako, and R. V. Uskov, “Modeling of electron transport in matter with the use of hybrid supercomputers,” Vychisl. Metody Programmir. 12, 152–159 (2011). M. E. Zhukovskiy, S. V. Podolyako, and R. V. Uskov, “Modeling of electron transport in matter with the use of hybrid supercomputers,” Vychisl. Metody Programmir. 12, 152–159 (2011).
4.
Zurück zum Zitat V. P. Efremov and A. I. Potapenko, “Thermomechanical processes of composite materials under the action of intense energy fluxes,” High Temp. 48, 881–886 (2010).CrossRef V. P. Efremov and A. I. Potapenko, “Thermomechanical processes of composite materials under the action of intense energy fluxes,” High Temp. 48, 881–886 (2010).CrossRef
5.
Zurück zum Zitat V. A. Egorova, K. K. Inozemceva, and M. E. Zhukovskiy, “An approach to modeling of the secondary radiation-induced effects in complex technical objects,” KIAM Preprint No. 110 (Keldysh Inst. Appl. Math., Moscow, 2018). V. A. Egorova, K. K. Inozemceva, and M. E. Zhukovskiy, “An approach to modeling of the secondary radiation-induced effects in complex technical objects,” KIAM Preprint No. 110 (Keldysh Inst. Appl. Math., Moscow, 2018).
6.
Zurück zum Zitat V. Egorova and M. Zhukovskiy, “Handling of the radiative electron emission modeling results by use of the neural networks,” Math. Montisnigri 38, 89–99 (2017). V. Egorova and M. Zhukovskiy, “Handling of the radiative electron emission modeling results by use of the neural networks,” Math. Montisnigri 38, 89–99 (2017).
7.
Zurück zum Zitat T. Mitchell, Machine Learning (McGraw-Hill Science, New York, 1997). T. Mitchell, Machine Learning (McGraw-Hill Science, New York, 1997).
8.
Zurück zum Zitat V. A. Gasilov, G. A. Bagdasarov, A. S. Boldarev, S. V. Diachenko, E. L. Kartasheva, O. G. Olkhovskaia, S. N. Boldyrev, I. V. Gasilova, and V. A. Shmyrov, “State-of the-Art approach to code development for 3D simulation of plasmadynamics (plasma multiphysics),” Vestn. Ufim. Aviats. Tekh. Univ., Ser. Upravl., Vychisl. Tekh. Inform. 15 (5), 120–129 (2011). V. A. Gasilov, G. A. Bagdasarov, A. S. Boldarev, S. V. Diachenko, E. L. Kartasheva, O. G. Olkhovskaia, S. N. Boldyrev, I. V. Gasilova, and V. A. Shmyrov, “State-of the-Art approach to code development for 3D simulation of plasmadynamics (plasma multiphysics),” Vestn. Ufim. Aviats. Tekh. Univ., Ser. Upravl., Vychisl. Tekh. Inform. 15 (5), 120–129 (2011).
9.
Zurück zum Zitat M. Zhukovskiy, S. Podoliako, G.-R. Jaenisch, C. Bellon, and U. Samadurau, “Monte Carlo simulation tool with CAD interface,” Rev. Prog. Quant. Nondestr. Eval. 25, 574–579 (2006).CrossRef M. Zhukovskiy, S. Podoliako, G.-R. Jaenisch, C. Bellon, and U. Samadurau, “Monte Carlo simulation tool with CAD interface,” Rev. Prog. Quant. Nondestr. Eval. 25, 574–579 (2006).CrossRef
10.
Zurück zum Zitat V. P. Zagonov, M. E. Zhukovskii, S. V. Podolyako, M. V. Skachkov, G.-R. Tillack, and K. Bellon, “Boundary description approach application for modeling the X-rays transformation in the computational diagnostics problems,” Mat. Model. 16 (5), 103–116 (2004). V. P. Zagonov, M. E. Zhukovskii, S. V. Podolyako, M. V. Skachkov, G.-R. Tillack, and K. Bellon, “Boundary description approach application for modeling the X-rays transformation in the computational diagnostics problems,” Mat. Model. 16 (5), 103–116 (2004).
11.
Zurück zum Zitat M. Zhukovskiy, S. Podoliako, G.-R. Jaenisch, and C. Bellon, “Monte-Carlo-simulation der Strahlenausbreitung an realen Bauteilgeometrien,” in Proceedings of the German Society for Non-Destructive Testing Annual Conference on NDT in Research, Development and Application, Salzburg, May 17–19,2004. M. Zhukovskiy, S. Podoliako, G.-R. Jaenisch, and C. Bellon, “Monte-Carlo-simulation der Strahlenausbreitung an realen Bauteilgeometrien,” in Proceedings of the German Society for Non-Destructive Testing Annual Conference on NDT in Research, Development and Application, Salzburg, May 17–19,2004.
12.
Zurück zum Zitat V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics,” J. Comput. Phys. 230, 2384–2390 (2011).MathSciNetCrossRef V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics,” J. Comput. Phys. 230, 2384–2390 (2011).MathSciNetCrossRef
13.
Zurück zum Zitat I. M. Sobol, “Uniformly distributed sequences with an additional property of uniformity,” USSR Comput. Math. Math. Phys. 16, 236–242 (1976).MathSciNetCrossRef I. M. Sobol, “Uniformly distributed sequences with an additional property of uniformity,” USSR Comput. Math. Math. Phys. 16, 236–242 (1976).MathSciNetCrossRef
14.
Zurück zum Zitat M. E. Zhukovskiy, S. V. Podolyako, and R. V. Uskov, “Model of individual collisions for description of electron transport in matter,” Math. Models Comput. Simul. 4, 101–109 (2012).CrossRef M. E. Zhukovskiy, S. V. Podolyako, and R. V. Uskov, “Model of individual collisions for description of electron transport in matter,” Math. Models Comput. Simul. 4, 101–109 (2012).CrossRef
15.
Zurück zum Zitat V. Egorova, R. Uskov, and M. Zhukovskiy, “The simulation of the photon-electron cascade on heterogeneous supercomputers,” in Proceedings of the International Symposium on Structural Health Monitoring and Nondestructive Testing (SHM-NDT-2018), Saarbrücken, Germany, Oct. 4–5,2018. https://www.ndt.net/article/shmndt2018/papers/SHM-NDT-2018_paper_32.pdf. V. Egorova, R. Uskov, and M. Zhukovskiy, “The simulation of the photon-electron cascade on heterogeneous supercomputers,” in Proceedings of the International Symposium on Structural Health Monitoring and Nondestructive Testing (SHM-NDT-2018), Saarbrücken, Germany, Oct. 4–5,2018. https://​www.​ndt.​net/​article/​shmndt2018/​papers/​SHM-NDT-2018_​paper_​32.​pdf.​
16.
Zurück zum Zitat F. P. Vasil’ev, Optimization Methods (Faktorial Press, Moscow, 2002) [in Russian]. F. P. Vasil’ev, Optimization Methods (Faktorial Press, Moscow, 2002) [in Russian].
17.
Zurück zum Zitat S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Pearson Education, 1998).MATH S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Pearson Education, 1998).MATH
18.
Zurück zum Zitat S. Osowski, Sieci neuronowe do przetwarzania informacji (Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2006). S. Osowski, Sieci neuronowe do przetwarzania informacji (Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2006).
19.
Zurück zum Zitat V. A. Gasilov, A. Yu. Krukovskii, Yu. A. Poveshchenko, and I. P. Tsygvintsev, “Homogeneous difference schemes for solving conjugate problems of hydrodynamics and elasticity,” KIAM Preprint No. 13 (Keldysh Inst. Appl. Math., Moscow, 2018). http://library.keldysh.ru/preprint.aspıd=2018-13. https://doi.org/10.20948/prepr-2018-13 V. A. Gasilov, A. Yu. Krukovskii, Yu. A. Poveshchenko, and I. P. Tsygvintsev, “Homogeneous difference schemes for solving conjugate problems of hydrodynamics and elasticity,” KIAM Preprint No. 13 (Keldysh Inst. Appl. Math., Moscow, 2018). http://​library.​keldysh.​ru/​preprint.​aspıd=​2018-13.​ https://​doi.​org/​10.​20948/​prepr-2018-13
20.
Zurück zum Zitat A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State (Birkhäuser, Basel, Berlin, 2005).MATH A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State (Birkhäuser, Basel, Berlin, 2005).MATH
Metadaten
Titel
Model of Radiation-Induced Thermomechanical Effects in Heterogeneous Finely Dispersed Materials
verfasst von
V. A. Egorova
F. N. Voronin
M. E. Zhukovskiy
M. B. Markov
A. I. Potapenko
R. V. Uskov
D. S. Boykov
Publikationsdatum
01.09.2020
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 5/2020
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048220050063

Weitere Artikel der Ausgabe 5/2020

Mathematical Models and Computer Simulations 5/2020 Zur Ausgabe

Premium Partner