Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 6/2021

01.11.2021

Numerical Study of Two-Phase Hyperbolic Models

verfasst von: B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is devoted to the numerical study of a finite-volume scheme with an HLLEM flux for solving equations from the family of Baer-Nunziato models. Three versions of the model are considered, differing in the degree of “nonequilibrium.” A brief description of the models and their differences are provided. To approximate the equations of nonequilibrium models with stiff right-hand sides, describing the process of mechanical and thermodynamic relaxation, the method of splitting into physical processes is used. Spatial approximations are constructed using the 1st and 2nd (TVD) order finite volume method. The HLLEM flux is used as a numerical flux, for which a simple algorithm for determining the parameter of the method that guarantees the physicality of the solution is proposed. A feature of the study is that all three considered models are applied to analyze numerically the same physical setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Dumbser and D. S. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems,” J. Comput. Phys. 304, 275–319 (2016).MathSciNetCrossRef M. Dumbser and D. S. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems,” J. Comput. Phys. 304, 275–319 (2016).MathSciNetCrossRef
2.
Zurück zum Zitat M. R. Baer and J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials,” Int. J. Multiphase Flow 12 (6), 861–889 (1986).CrossRef M. R. Baer and J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials,” Int. J. Multiphase Flow 12 (6), 861–889 (1986).CrossRef
3.
Zurück zum Zitat D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids (Springer Science & Business Media, New York, 2006).MATH D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids (Springer Science & Business Media, New York, 2006).MATH
4.
Zurück zum Zitat N. Favrie, S. L. Gavrilyuk, and R. Saurel, “Solid–fluid diffuse interface model in cases of extreme deformations,” J. Comput. Phys. 228 (16), 6037–6077 (2009).MathSciNetCrossRef N. Favrie, S. L. Gavrilyuk, and R. Saurel, “Solid–fluid diffuse interface model in cases of extreme deformations,” J. Comput. Phys. 228 (16), 6037–6077 (2009).MathSciNetCrossRef
5.
Zurück zum Zitat A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone,” Phys. Fluids 9 (12), 3885–3897 (1997).CrossRef A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone,” Phys. Fluids 9 (12), 3885–3897 (1997).CrossRef
6.
Zurück zum Zitat A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart, “Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations,” Phys. Fluids 13 (10), 3002–3024 (2001).CrossRef A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart, “Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations,” Phys. Fluids 13 (10), 3002–3024 (2001).CrossRef
7.
Zurück zum Zitat L. van de Leur, “Assessment of the Baer-Nunziato seven-equation model applied to steam-water transients: Calibration of the stiffened gas equation of state based on steam-water tables,” Master Thesis (Eindhoven University of Technology Eindhoven, 2015). L. van de Leur, “Assessment of the Baer-Nunziato seven-equation model applied to steam-water transients: Calibration of the stiffened gas equation of state based on steam-water tables,” Master Thesis (Eindhoven University of Technology Eindhoven, 2015).
8.
Zurück zum Zitat A. Murrone and H. Guillard, “A five equation reduced model for compressible two phase flow problems,” J. Comput. Phys. 202 (2), 664–698 (2005).MathSciNetCrossRef A. Murrone and H. Guillard, “A five equation reduced model for compressible two phase flow problems,” J. Comput. Phys. 202 (2), 664–698 (2005).MathSciNetCrossRef
9.
Zurück zum Zitat S. A. Tokareva and E. F. Toro, “HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow,” J. Comput. Phys. 229 (10), 3573–3604 (2010).MathSciNetCrossRef S. A. Tokareva and E. F. Toro, “HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow,” J. Comput. Phys. 229 (10), 3573–3604 (2010).MathSciNetCrossRef
10.
Zurück zum Zitat F. Fraysse, C. Redondo, G. Rubio, and E. Valero, “Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity,” J. Comput. Phys. 326, 805–827 (2016).MathSciNetCrossRef F. Fraysse, C. Redondo, G. Rubio, and E. Valero, “Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity,” J. Comput. Phys. 326, 805–827 (2016).MathSciNetCrossRef
11.
Zurück zum Zitat I. Menshov and A. Serezhkin, “A generalized Rusanov method for the Baer–Nunziato equations with application to DDT processes in condensed porous explosives,” Int. J. Numer. Methods Fluids 86 (5), 346–364 (2018).MathSciNetCrossRef I. Menshov and A. Serezhkin, “A generalized Rusanov method for the Baer–Nunziato equations with application to DDT processes in condensed porous explosives,” Int. J. Numer. Methods Fluids 86 (5), 346–364 (2018).MathSciNetCrossRef
12.
Zurück zum Zitat R. Saurel and R. Abgrall, “A simple method for compressible multifluid flows,” SIAM J. Sci. Comput. 21 (3), 1115–1145 (1999).MathSciNetCrossRef R. Saurel and R. Abgrall, “A simple method for compressible multifluid flows,” SIAM J. Sci. Comput. 21 (3), 1115–1145 (1999).MathSciNetCrossRef
13.
Zurück zum Zitat D. Gidaspow, “Modeling of two phase flow,” in Proc. International Heat Transfer Conference 5 (Tokyo, Japan, 3–7 September, 1974), pp. 163–168, International Heat Transfer Conference Digital Library (Begel House, New York, 1974). D. Gidaspow, “Modeling of two phase flow,” in Proc. International Heat Transfer Conference 5 (Tokyo, Japan, 3–7 September, 1974), pp. 163–168, International Heat Transfer Conference Digital Library (Begel House, New York, 1974).
14.
Zurück zum Zitat L. van Wijngaarden, “Some problems in the formulation of the equations for gas/liquid flows,” in Theoretical and Applied Mechanics, Proc. 14th Int. Congress (Delft, Netherlands, August 30–September 4, 1976), Ed. by W. T. Koiter (North-Holland, Amsterdam, 1977), pp. 249–260. L. van Wijngaarden, “Some problems in the formulation of the equations for gas/liquid flows,” in Theoretical and Applied Mechanics, Proc. 14th Int. Congress (Delft, Netherlands, August 30–September 4, 1976), Ed. by W. T. Koiter (North-Holland, Amsterdam, 1977), pp. 249–260.
15.
Zurück zum Zitat R. W. Lyczkowski, D. Gidaspow, C. W. Solbrig, and E. D. Hughes, “Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations,” Nucl. Sci. Eng. 66 (3), 378–396 (1978).CrossRef R. W. Lyczkowski, D. Gidaspow, C. W. Solbrig, and E. D. Hughes, “Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations,” Nucl. Sci. Eng. 66 (3), 378–396 (1978).CrossRef
16.
Zurück zum Zitat G. Allaire, S. Clerc, and S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids,” J. Comput. Phys. 181 (2), 577–616 (2002).MathSciNetCrossRef G. Allaire, S. Clerc, and S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids,” J. Comput. Phys. 181 (2), 577–616 (2002).MathSciNetCrossRef
17.
Zurück zum Zitat R. Saurel, O. Le Métayer, J. Massoni, and S. Gavrilyuk, “Shock jump relations for multiphase mixtures with stiff mechanical relaxation,” Shock Waves 16 (3), 209–232 (2007).CrossRef R. Saurel, O. Le Métayer, J. Massoni, and S. Gavrilyuk, “Shock jump relations for multiphase mixtures with stiff mechanical relaxation,” Shock Waves 16 (3), 209–232 (2007).CrossRef
18.
Zurück zum Zitat A. V. Rodionov, “Methods of increasing the accuracy in Godunov’s scheme,” USSR Comput. Math. Math. Phys. 27 (6), 164–169 (1987).CrossRef A. V. Rodionov, “Methods of increasing the accuracy in Godunov’s scheme,” USSR Comput. Math. Math. Phys. 27 (6), 164–169 (1987).CrossRef
19.
Zurück zum Zitat P. Le Floch and T.-P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form,” Forum Math. 5 (3), 261–280 (1993).MathSciNetCrossRef P. Le Floch and T.-P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form,” Forum Math. 5 (3), 261–280 (1993).MathSciNetCrossRef
20.
Zurück zum Zitat G. Dal Maso, P. G. LeFloch, and F. Murat, “Definition and weak stability of nonconservative products,” J. Math. Pures Appl. 74 (6), 483–548 (1995).MathSciNetMATH G. Dal Maso, P. G. LeFloch, and F. Murat, “Definition and weak stability of nonconservative products,” J. Math. Pures Appl. 74 (6), 483–548 (1995).MathSciNetMATH
21.
Zurück zum Zitat M. J. Castro, P. G. LeFloch, M. L. Muñoz-Ruiz, and C. Parés, “Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes,” J. Comput. Phys. 227 (17), 8107–8129 (2008).MathSciNetCrossRef M. J. Castro, P. G. LeFloch, M. L. Muñoz-Ruiz, and C. Parés, “Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes,” J. Comput. Phys. 227 (17), 8107–8129 (2008).MathSciNetCrossRef
Metadaten
Titel
Numerical Study of Two-Phase Hyperbolic Models
verfasst von
B. A. Korneev
R. R. Tukhvatullina
E. B. Savenkov
Publikationsdatum
01.11.2021
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 6/2021
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048221060090

Weitere Artikel der Ausgabe 6/2021

Mathematical Models and Computer Simulations 6/2021 Zur Ausgabe

Premium Partner