Skip to main content
Erschienen in: Physics of Metals and Metallography 2/2020

01.02.2020 | STRENGTH AND PLASTICITY

Microstructure and Mechanical Properties of A356 Aluminum Alloy Prepared by Casting Combined with Back Extrusion

verfasst von: Liang Zhenglong, Zhang Qi

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the microstructure and mechanical properties of A356 aluminum alloy prepared by the combined forming process of casting and back extrusion are investigated. The back extrusion was employed to induce severe plastic deformation for improving the casting microstructures at temperatures ranging from 490 to 540°С with different feed rates. Many shrinkage porosities were found in the original casting samples. According to the experiments carried out in this paper, the combined process could significantly eliminate the shrinkage porosities. The plate-like or long strip-like Si particles and the primary casting dendrites could be obviously refined at the region where the effective strain is larger than 1.8. The severe plastic deformation could be induced at the region under the punch, where the microstructure refining was achieved at the same time. Due to the softening behavior caused by dynamic recovery, the yield strength and compressive strength of the deformed area gradually decreased with the feed rate, while they increased as the pressure gradually increased at the undeformed region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Shibayan, F. Lawrence, R. Andres, R. W. Thomas, and S. Amit, “Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part 1: Microstructure evolution,” Metall. Mater. Trans. A 48, 2529–2542 (2017).CrossRef R. Shibayan, F. Lawrence, R. Andres, R. W. Thomas, and S. Amit, “Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part 1: Microstructure evolution,” Metall. Mater. Trans. A 48, 2529–2542 (2017).CrossRef
2.
Zurück zum Zitat B. Renato, M. Jefferson, and A. C. Antônio, “Microstructure and mechanical behavior of Al9Si0.8Fe alloy with different Mn contents,” J. Mater. Sci. Technol. 33, 1–8 (2017). B. Renato, M. Jefferson, and A. C. Antônio, “Microstructure and mechanical behavior of Al9Si0.8Fe alloy with different Mn contents,” J. Mater. Sci. Technol. 33, 1–8 (2017).
3.
Zurück zum Zitat W. M. Jiang, C. Xu, B. J. Wang, Z. T. Fan, and H. B. Wu, “Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting,” Int. J. Adv. Manuf. Technol. 83, 167–175 (2015).CrossRef W. M. Jiang, C. Xu, B. J. Wang, Z. T. Fan, and H. B. Wu, “Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting,” Int. J. Adv. Manuf. Technol. 83, 167–175 (2015).CrossRef
4.
Zurück zum Zitat G. Ran, J. E. Zhou, and Q. G. Wang, “Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy,” Int. J. Adv. Manuf. Technol. 83, 167–175 (2016).CrossRef G. Ran, J. E. Zhou, and Q. G. Wang, “Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy,” Int. J. Adv. Manuf. Technol. 83, 167–175 (2016).CrossRef
5.
Zurück zum Zitat M. L. Santella, T. Engstrom, D. Storjohann, and T. Y. Pan, “Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356,” Scr. Mater. 53, 201–206 (2005).CrossRef M. L. Santella, T. Engstrom, D. Storjohann, and T. Y. Pan, “Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356,” Scr. Mater. 53, 201–206 (2005).CrossRef
6.
Zurück zum Zitat R. Kapoor, K. Kandasamy, R. S. Mishra, J. A. Baumann, and G. Grant, “Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy,” Mater. Sci. Eng., A 561, 159–168 (2013).CrossRef R. Kapoor, K. Kandasamy, R. S. Mishra, J. A. Baumann, and G. Grant, “Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy,” Mater. Sci. Eng., A 561, 159–168 (2013).CrossRef
7.
Zurück zum Zitat A. Tajiri, Y. Uematsu, T. Kakiuchi, Y. Tozaki, Y. Suzuki, and A. Afrinaldi, “Effect of friction stir processing conditions on fatigue behavior and texture development in A356-T6 cast aluminum alloy,” Int. J. Fatigue 80, 192–202 (2015).CrossRef A. Tajiri, Y. Uematsu, T. Kakiuchi, Y. Tozaki, Y. Suzuki, and A. Afrinaldi, “Effect of friction stir processing conditions on fatigue behavior and texture development in A356-T6 cast aluminum alloy,” Int. J. Fatigue 80, 192–202 (2015).CrossRef
8.
Zurück zum Zitat S. K. Singh, R. J. Immanuel, S. Babu, S. K. Panigrahi, and G. D. J. Ram, “Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al–Si hypoeutectic A356 alloy,” J. Mater. Process Technol. 236, 252–262 (2016).CrossRef S. K. Singh, R. J. Immanuel, S. Babu, S. K. Panigrahi, and G. D. J. Ram, “Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al–Si hypoeutectic A356 alloy,” J. Mater. Process Technol. 236, 252–262 (2016).CrossRef
9.
Zurück zum Zitat M. Moradi, M. Nili-Ahmadabadi, and B. Heidarian, “Improvement of mechanical properties of AL (A356) cast alloy processed by ECAP with different heat treatments,” Int. J. Mater. Forming 2, 85–88 (2009).CrossRef M. Moradi, M. Nili-Ahmadabadi, and B. Heidarian, “Improvement of mechanical properties of AL (A356) cast alloy processed by ECAP with different heat treatments,” Int. J. Mater. Forming 2, 85–88 (2009).CrossRef
10.
Zurück zum Zitat T. Khelfa, M. A. Rekik, M. Khitouni, and J. M. Cabrera-Marrero, “Structure and microstructure evolution of Al–Mg–Si alloy processed by equal-channel angular pressing,” Int. J. Adv. Manuf. Technol. 92, 1–10 (2017).CrossRef T. Khelfa, M. A. Rekik, M. Khitouni, and J. M. Cabrera-Marrero, “Structure and microstructure evolution of Al–Mg–Si alloy processed by equal-channel angular pressing,” Int. J. Adv. Manuf. Technol. 92, 1–10 (2017).CrossRef
11.
Zurück zum Zitat M. Lipinska, W. Chrominski, L. Olejnik, J. Golinski, A. Rosochowski, and M. Lewandowska, “Ultrafine-grained plates of Al–Mg–Si alloy obtained by incremental equal channel angular pressing: microstructure and mechanical properties,” Metall. Mater. Trans. A 48, 4871–4882 (2017).CrossRef M. Lipinska, W. Chrominski, L. Olejnik, J. Golinski, A. Rosochowski, and M. Lewandowska, “Ultrafine-grained plates of Al–Mg–Si alloy obtained by incremental equal channel angular pressing: microstructure and mechanical properties,” Metall. Mater. Trans. A 48, 4871–4882 (2017).CrossRef
12.
Zurück zum Zitat R. J. Immanuel and S. K. Panigrahi, “Influence of cryorolling on microstructure and mechanical properties of a cast hypoeutectic Al–Si alloy,” Mater. Sci. Eng., A 640, 424–435 (2015).CrossRef R. J. Immanuel and S. K. Panigrahi, “Influence of cryorolling on microstructure and mechanical properties of a cast hypoeutectic Al–Si alloy,” Mater. Sci. Eng., A 640, 424–435 (2015).CrossRef
13.
Zurück zum Zitat R. J. Immanuel and S. K. Panigrahi, “Transformation of cast A356 ingots to wrought sheets with enhanced mechanical and tribological properties by different thermo-mechanical processing routes,” Mater. Des. 101, 44–55 (2016).CrossRef R. J. Immanuel and S. K. Panigrahi, “Transformation of cast A356 ingots to wrought sheets with enhanced mechanical and tribological properties by different thermo-mechanical processing routes,” Mater. Des. 101, 44–55 (2016).CrossRef
14.
Zurück zum Zitat K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, J. L. Enrique, and J. M. Schoenung, “Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy,” Acta Mater. 62, 141–155 (2014).CrossRef K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, J. L. Enrique, and J. M. Schoenung, “Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy,” Acta Mater. 62, 141–155 (2014).CrossRef
15.
Zurück zum Zitat H. R. Kim, M. G. Seo, and W. B. Bae, “A study of the manufacturing of tie-rod ends with casting/forging process,” J. Mater. Process Technol. 125–126, 471–476 (2002).CrossRef H. R. Kim, M. G. Seo, and W. B. Bae, “A study of the manufacturing of tie-rod ends with casting/forging process,” J. Mater. Process Technol. 125–126, 471–476 (2002).CrossRef
16.
Zurück zum Zitat S. I. Wang, M. K. Seo, J. R. Cho, and W. B. Bae, “A study on the development of large aluminum flange using the casting/forging process,” J. Mater. Process Technol. 130–131, 294–298 (2002).CrossRef S. I. Wang, M. K. Seo, J. R. Cho, and W. B. Bae, “A study on the development of large aluminum flange using the casting/forging process,” J. Mater. Process Technol. 130–131, 294–298 (2002).CrossRef
17.
Zurück zum Zitat B. Plonka, A. Klyszewski, J. Senderski, and M. Lech-grega, “Application of Al alloys, in the form of cast billet, as stock material for the die forging in automotive industry,” Arch. Civ. Mech. Eng. 8, 149–156 (2008).CrossRef B. Plonka, A. Klyszewski, J. Senderski, and M. Lech-grega, “Application of Al alloys, in the form of cast billet, as stock material for the die forging in automotive industry,” Arch. Civ. Mech. Eng. 8, 149–156 (2008).CrossRef
18.
Zurück zum Zitat L. Ceschini, A. Morri, and G. Sambogna, “The effect of hot isostatic pressing on the fatigue behavior of sand-cast A356-T6 and A204-T6 aluminum alloys,” J. Mater. Process Technol. 204, 231–238 (2008).CrossRef L. Ceschini, A. Morri, and G. Sambogna, “The effect of hot isostatic pressing on the fatigue behavior of sand-cast A356-T6 and A204-T6 aluminum alloys,” J. Mater. Process Technol. 204, 231–238 (2008).CrossRef
19.
Zurück zum Zitat S. C. Wang, N. Zhou, W. J. Qi, and K. H. Zheng, “Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process,” Trans. Nonferrous Met. Soc. China 24, 2214–2219 (2014).CrossRef S. C. Wang, N. Zhou, W. J. Qi, and K. H. Zheng, “Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process,” Trans. Nonferrous Met. Soc. China 24, 2214–2219 (2014).CrossRef
20.
Zurück zum Zitat H. T. Zhou, S. X. Xu, W. D. Li, S. C. Wang, and Y. Peng, “A study of automobile brake bracket formed by casting-forging integrated forming technology,” Mater. Des. 67, 285–292 (2015).CrossRef H. T. Zhou, S. X. Xu, W. D. Li, S. C. Wang, and Y. Peng, “A study of automobile brake bracket formed by casting-forging integrated forming technology,” Mater. Des. 67, 285–292 (2015).CrossRef
21.
Zurück zum Zitat M. F. Novella, A. Ghiotti, S. Bruschi, and P. F. Bariani, “Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars,” J. Mater. Process. Technol. 222, 259–267 (2015).CrossRef M. F. Novella, A. Ghiotti, S. Bruschi, and P. F. Bariani, “Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars,” J. Mater. Process. Technol. 222, 259–267 (2015).CrossRef
22.
Zurück zum Zitat S. K. Chaudhury and D. Apelian, “Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed,” J. Mater. Sci. 41, 4684–4690 (2016).CrossRef S. K. Chaudhury and D. Apelian, “Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed,” J. Mater. Sci. 41, 4684–4690 (2016).CrossRef
23.
Zurück zum Zitat L. J. Colley, “Microstructure-property models for heat treatment of A356 aluminum alloy,” Doctoral Dissertation (University of British Columbia, Vancouver, 2011). L. J. Colley, “Microstructure-property models for heat treatment of A356 aluminum alloy,” Doctoral Dissertation (University of British Columbia, Vancouver, 2011).
24.
Zurück zum Zitat S. W. Youn and C. G. Kang, “Characterization of age-hardening behavior of eutectic region in squeeze-cast A356-T6 alloy using nano-indenter and atomic force microscope,” Mater. Sci. Eng., A 425, 28–35 (2006).CrossRef S. W. Youn and C. G. Kang, “Characterization of age-hardening behavior of eutectic region in squeeze-cast A356-T6 alloy using nano-indenter and atomic force microscope,” Mater. Sci. Eng., A 425, 28–35 (2006).CrossRef
25.
Zurück zum Zitat F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, New York, 2004). F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, New York, 2004).
26.
Zurück zum Zitat K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Mater. Des. 111, 548–574 (2016).CrossRef K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Mater. Des. 111, 548–574 (2016).CrossRef
27.
Zurück zum Zitat M. Haghshenas, A. Zarei-Hanzaki, and A. Sayed, “Hot deformation behaviour of thixocast A356 aluminum alloy during compression at elevated temperatures,” Int. J. Mater. Forming 1 (1), 1001–1005 (2008).CrossRef M. Haghshenas, A. Zarei-Hanzaki, and A. Sayed, “Hot deformation behaviour of thixocast A356 aluminum alloy during compression at elevated temperatures,” Int. J. Mater. Forming 1 (1), 1001–1005 (2008).CrossRef
28.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, H. R. Abedi, and O. Sabokpa, “The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy,” Mater. Sci. Eng., A 549, 93–99 (2012).CrossRef N. Haghdadi, A. Zarei-Hanzaki, H. R. Abedi, and O. Sabokpa, “The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy,” Mater. Sci. Eng., A 549, 93–99 (2012).CrossRef
29.
Zurück zum Zitat M. Zhu, Z. Jian, G. Yang, and Y. Zhou, “Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys,” Mater. Des. 36, 243–249 (2012).CrossRef M. Zhu, Z. Jian, G. Yang, and Y. Zhou, “Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys,” Mater. Des. 36, 243–249 (2012).CrossRef
30.
Zurück zum Zitat M. J. Roy and D. M. Maijer, “Response of A356 to warm rotary forming and subsequent T6 heat treatment,” Mater. Sci. Eng., A 611, 223–233 (2014).CrossRef M. J. Roy and D. M. Maijer, “Response of A356 to warm rotary forming and subsequent T6 heat treatment,” Mater. Sci. Eng., A 611, 223–233 (2014).CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of A356 Aluminum Alloy Prepared by Casting Combined with Back Extrusion
verfasst von
Liang Zhenglong
Zhang Qi
Publikationsdatum
01.02.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20020106

Weitere Artikel der Ausgabe 2/2020

Physics of Metals and Metallography 2/2020 Zur Ausgabe