Skip to main content
Erschienen in: Physics of Metals and Metallography 12/2020

01.12.2020 | STRENGTH AND PLASTICITY

Transformation of the Structure and Parameters of Phases during Aging of a Titanium Ti–10V–2Fe–3Al Alloy and Their Relation to Strengthening

verfasst von: A. V. Zhelnina, M. S. Kalienko, A. G. Illarionov, N. V. Shchetnikov

Erschienen in: Physics of Metals and Metallography | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—Scanning electron microscopy, electron microprobe and X-ray diffraction analyses, and durometry are used to study changes in the structure, phase composition, and hardness of a quenched titanium Ti‒10V–2Fe–3Al alloy in the course of aging at 500°С for 2–32 h. A complex analysis of changes in the lattice parameters of the primary and secondary α phases formed in the alloy during aging has been performed for the first time using full-profile X-ray diffraction analysis. Aging-induced changes in the hardness of the alloy are shown to be determined both by the sizes of formed secondary α-phase particles and changes in the alloying of the matrix β solid solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, No. 6, 1281–1303 (2015).CrossRef J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, No. 6, 1281–1303 (2015).CrossRef
2.
Zurück zum Zitat T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3Al,” Metall. Trans. A 11, 1980–1987 (1980).CrossRef T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3Al,” Metall. Trans. A 11, 1980–1987 (1980).CrossRef
3.
Zurück zum Zitat A. G. Illarionov, A. V. Korelin, A. A. Popov, S. M. Illarionova, and O. A. Elkina, “Formation of the structure, phase composition, and properties in high-strength titanium alloy upon isothermal and thermomechanical treatment,” Phys. Met. Metallogr. 119, No. 8, 780–788 (2018).CrossRef A. G. Illarionov, A. V. Korelin, A. A. Popov, S. M. Illarionova, and O. A. Elkina, “Formation of the structure, phase composition, and properties in high-strength titanium alloy upon isothermal and thermomechanical treatment,” Phys. Met. Metallogr. 119, No. 8, 780–788 (2018).CrossRef
4.
Zurück zum Zitat O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina, and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, No. 1, 75–80 (2017).CrossRef O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina, and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, No. 1, 75–80 (2017).CrossRef
5.
Zurück zum Zitat A. G. Illarionov, A. V. Trubochkin, A. M. Shalaev, S. M. Illarionova, and A. A. Popov, “Effect of microalloying, with rem inclusively, on the structure, phase composition and properties of (α + β)-titanium alloy,” Met. Sci. Heat Treat. 57, 719–725 (2016).CrossRef A. G. Illarionov, A. V. Trubochkin, A. M. Shalaev, S. M. Illarionova, and A. A. Popov, “Effect of microalloying, with rem inclusively, on the structure, phase composition and properties of (α + β)-titanium alloy,” Met. Sci. Heat Treat. 57, 719–725 (2016).CrossRef
6.
Zurück zum Zitat R. R. Boyer and G. W. Kuhlman, “Processing properties relationships of Ti–10V–2Fe–3Al,” J. Metall. Trans. A 18, 2095–2103 (1987).CrossRef R. R. Boyer and G. W. Kuhlman, “Processing properties relationships of Ti–10V–2Fe–3Al,” J. Metall. Trans. A 18, 2095–2103 (1987).CrossRef
7.
Zurück zum Zitat E. W. Collings, The Physical Metallurgy of Titanium Alloys (Park, Ohio, 1984), p. 261. E. W. Collings, The Physical Metallurgy of Titanium Alloys (Park, Ohio, 1984), p. 261.
8.
Zurück zum Zitat T. Li, M. Ahmed, G. ShiR. Sha, G. Casillas, H.‑W. Yen, Y. Wang, E. V. Pereloma, and J. M. Cairney, “The influence of partitioning on the growth of intragranular α in near-β Ti alloys,” J. Alloys Compd. 643, 212–222 (2015).CrossRef T. Li, M. Ahmed, G. ShiR. Sha, G. Casillas, H.‑W. Yen, Y. Wang, E. V. Pereloma, and J. M. Cairney, “The influence of partitioning on the growth of intragranular α in near-β Ti alloys,” J. Alloys Compd. 643, 212–222 (2015).CrossRef
9.
Zurück zum Zitat C. Y. Wang, L. W. Yang, Y. W. Cui, and M. T. Pérez-Prado, “High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys,” Mater. Des. 137, 371–383 (2018).CrossRef C. Y. Wang, L. W. Yang, Y. W. Cui, and M. T. Pérez-Prado, “High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys,” Mater. Des. 137, 371–383 (2018).CrossRef
10.
Zurück zum Zitat C. Zou, J. Li, W. Y. Wang, Y. Zhang, B. Tang, H. Kou, H. Wang, J. Wang, D. Xu, and D. Lin, “Revealing the local lattice strains and strengthening mechanisms of Ti alloys,” Comput. Mater. Sci. 152, 169–177 (2018).CrossRef C. Zou, J. Li, W. Y. Wang, Y. Zhang, B. Tang, H. Kou, H. Wang, J. Wang, D. Xu, and D. Lin, “Revealing the local lattice strains and strengthening mechanisms of Ti alloys,” Comput. Mater. Sci. 152, 169–177 (2018).CrossRef
11.
Zurück zum Zitat Y. Pan, Q. Sun, L. Xiao, X. Ding, and L. Juan, “Plastic deformation behavior and microscopic mechanism of metastable Ti–10V–2Fe–3Al alloy single crystal pillars orientated to ❬011❭β in submicron scales Part II: Phase transformation dependence of size effect and deformation mechanism,” Mater. Sci. Eng., A 743, 804–810 (2019).CrossRef Y. Pan, Q. Sun, L. Xiao, X. Ding, and L. Juan, “Plastic deformation behavior and microscopic mechanism of metastable Ti–10V–2Fe–3Al alloy single crystal pillars orientated to ❬011❭β in submicron scales Part II: Phase transformation dependence of size effect and deformation mechanism,” Mater. Sci. Eng., A 743, 804–810 (2019).CrossRef
12.
Zurück zum Zitat B. Gault, M. P. Moody, S. P. Cairney, and S. P. Ringer, Atom Probe Microscopy (Springer Science & Business Media, 2012), p. 396.CrossRef B. Gault, M. P. Moody, S. P. Cairney, and S. P. Ringer, Atom Probe Microscopy (Springer Science & Business Media, 2012), p. 396.CrossRef
13.
Zurück zum Zitat D. B. Williams and C. B. Carter, Transmission Electron Microscopy: Spectrometry. IV (Plenum Press, New York, 1996), p. 610.CrossRef D. B. Williams and C. B. Carter, Transmission Electron Microscopy: Spectrometry. IV (Plenum Press, New York, 1996), p. 610.CrossRef
14.
Zurück zum Zitat TOPAS. v3, General Profile and Structure Analysis Software for Powder Diffraction Data. User’s manual. Karlsruhe, Germany: Bruker AXS, 2005. TOPAS. v3, General Profile and Structure Analysis Software for Powder Diffraction Data. User’s manual. Karlsruhe, Germany: Bruker AXS, 2005.
15.
Zurück zum Zitat I. C. Dragomir, D. S. Li, G. A. Castello-Branco, Snyder R. L. Garmestani, G. Ribarikd, and T. Ungar, “Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction,” Mater. Charact. 55, 66–74 (2005).CrossRef I. C. Dragomir, D. S. Li, G. A. Castello-Branco, Snyder R. L. Garmestani, G. Ribarikd, and T. Ungar, “Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction,” Mater. Charact. 55, 66–74 (2005).CrossRef
16.
Zurück zum Zitat P. Barriobero-Vita, G. Requena, F. Warchomicka, A. Stark, N. Shell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50, 1412–1426 (2015).CrossRef P. Barriobero-Vita, G. Requena, F. Warchomicka, A. Stark, N. Shell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50, 1412–1426 (2015).CrossRef
17.
Zurück zum Zitat F. V. Vodolazskii, A. G. Illarionov, A. A. Popov, M. O. Leder, A. V. Zhloba, and A. V. Skidan, “A study of isothermal decomposition of β-solid solution in titanium alloy VST2,” Met. Sci. Heat Treat. 57, 458–462 (2015).CrossRef F. V. Vodolazskii, A. G. Illarionov, A. A. Popov, M. O. Leder, A. V. Zhloba, and A. V. Skidan, “A study of isothermal decomposition of β-solid solution in titanium alloy VST2,” Met. Sci. Heat Treat. 57, 458–462 (2015).CrossRef
18.
Zurück zum Zitat P. Li, T. SunX. Zhang, H. Zhang, D. Wang, Q. Sun, L. Xiao, and J. Sun, “Secondary hardening behavior in Ti alloy,” Mater. Sci. Eng., A 759, 640–647 (2019).CrossRef P. Li, T. SunX. Zhang, H. Zhang, D. Wang, Q. Sun, L. Xiao, and J. Sun, “Secondary hardening behavior in Ti alloy,” Mater. Sci. Eng., A 759, 640–647 (2019).CrossRef
19.
Zurück zum Zitat V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials,” Mater. Charact. 85, 111–123 (2013).CrossRef V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials,” Mater. Charact. 85, 111–123 (2013).CrossRef
20.
Zurück zum Zitat M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile X-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020).CrossRef M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile X-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020).CrossRef
21.
Zurück zum Zitat F. W. Chen, G. Xu, X. Y. Zhang, K-C. Zhou, and Y. Cui, “Effect of α morphology on the diffusional β ↔ α transformation in Ti–55531 during continuous heating: Dissection by dilatometer test, microstructure observation and calculation,” J. Alloys Compd. 702, 352–365 (2017).CrossRef F. W. Chen, G. Xu, X. Y. Zhang, K-C. Zhou, and Y. Cui, “Effect of α morphology on the diffusional β ↔ α transformation in Ti–55531 during continuous heating: Dissection by dilatometer test, microstructure observation and calculation,” J. Alloys Compd. 702, 352–365 (2017).CrossRef
22.
Zurück zum Zitat U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian]. U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian].
23.
Zurück zum Zitat G. Shao, A. P. Miodownik, and P. Tsakiropoulos, “ω‑phase formation in V–Al and Ti–Al–V alloys,” Philos. Mag. A 71, No. 6, 1389–1408 (1995).CrossRef G. Shao, A. P. Miodownik, and P. Tsakiropoulos, “ω‑phase formation in V–Al and Ti–Al–V alloys,” Philos. Mag. A 71, No. 6, 1389–1408 (1995).CrossRef
24.
Zurück zum Zitat A. Kilmametov, Yu. Ivanisenko, B. Straumal, A. A. Mazilkin, H. Hahn, A. S. Gomakova, M. J. Kriegel, O. B. Fabrichnaya, and D. Rafaia, “Transformations of α' martensite in Ti–Fe alloys under high pressure torsion,” Scr. Mater. 136, 46–49 (2017).CrossRef A. Kilmametov, Yu. Ivanisenko, B. Straumal, A. A. Mazilkin, H. Hahn, A. S. Gomakova, M. J. Kriegel, O. B. Fabrichnaya, and D. Rafaia, “Transformations of α' martensite in Ti–Fe alloys under high pressure torsion,” Scr. Mater. 136, 46–49 (2017).CrossRef
25.
Zurück zum Zitat G. Gottshtain, Physicochemical Basics of Materials Science (Binom, Moscow, 2014) [in Russian]. G. Gottshtain, Physicochemical Basics of Materials Science (Binom, Moscow, 2014) [in Russian].
26.
Zurück zum Zitat M. Ahmed, D. Wexler, G. Casillas, O. M. Ivasishin, and E. Peraloma, “The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–2Fe–3Al alloy,” Acta Mater. 84, 124–154 (2015). M. Ahmed, D. Wexler, G. Casillas, O. M. Ivasishin, and E. Peraloma, “The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–2Fe–3Al alloy,” Acta Mater. 84, 124–154 (2015).
27.
Zurück zum Zitat A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties. Handbook (VILS, Moscow, 2009) [in Russian]. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties. Handbook (VILS, Moscow, 2009) [in Russian].
Metadaten
Titel
Transformation of the Structure and Parameters of Phases during Aging of a Titanium Ti–10V–2Fe–3Al Alloy and Their Relation to Strengthening
verfasst von
A. V. Zhelnina
M. S. Kalienko
A. G. Illarionov
N. V. Shchetnikov
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 12/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20120133

Weitere Artikel der Ausgabe 12/2020

Physics of Metals and Metallography 12/2020 Zur Ausgabe