Skip to main content
Erschienen in: Thermal Engineering 7/2019

01.07.2019 | HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Experimental and Calculated Investigation of a Natural Circulation Loop’s Thermal-Hydraulic Characteristics

verfasst von: V. V. Yagov, N. O. Zubov, O. N. Kaban’kov, L. A. Sukomel

Erschienen in: Thermal Engineering | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

The results from experimental investigation into hydrodynamics and heat transfer in a two-phase natural circulation loop (NCL) under atmospheric pressure are presented. The experiments were carried out for liquids having essentially different properties: water, ethanol, and perfluorohexane C6F14 (the product trademark is FC-72). The circulation velocity in the NCL is not known in advance but is a complex function of the specified parameters (heat flux and liquid temperature at the heated section inlet) and of the two-phase flow internal characteristics. The liquid temperatures at the heated section inlet, the wall temperature over the section height, and also the circulation velocity were measured in the experiments at a specified heat flux; in addition, the two-phase flow at the loop riser leg outlet was filmed on video. The experiments and analysis have shown that flow hydrodynamic instability (circulation velocity pulsations) is really unavoidable in a two-phase NCL. Hydrodynamic instability with a high circulation velocity amplitude and with the occurrence of backward flows is typical for regimes involving significant liquid subcooling values at the heated section inlet and for NCLs containing an extended part with single-phase convection. This instability, which is characteristic for experiments with water, is due to the displacement of the boiling incipience section over the section height; the instability also persists at small subcooling values but with a low pulsation amplitude. Under the developed saturated liquid nucleate boiling conditions (at high heat flux values), the circulation velocity and wall temperature pulsations have small amplitudes, and the flow can be regarded as stable. In the experiments with perfluorohexane, the smallest wall temperature and circulation velocity pulsations were pointed out, which is attributed to a relatively high value of reduced pressure. In the experiments with ethanol, instability occurs in the developed nucleate boiling region (q > 35 kW/m2); this instability is caused by periodically alternating two-phase flow structure (regime). A procedure for calculating a low-pressure NCL is developed, in which the two-phase flow’s local parameters (void fraction, phase velocities, and pressure) are calculated according to a modified homogeneous model (taking into account the phase distribution factor and phases slip) and a dispersed-annular flow model taking into account the droplet entrainment and deposition phenomena. A comparison of the NCL calculation results with the experimental data obtained for three different liquids has shown that they are in good agreement with each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat G. B. Wallis, One-Dimensional Two-Phase Flow (McGraw-Hill, New York, 1969; Mir, Moscow, 1972). G. B. Wallis, One-Dimensional Two-Phase Flow (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).
3.
Zurück zum Zitat S. Kakaç and B. Bon, “A review of two-phase flow dynamic instabilities in tube boiling systems,” Int. J. Heat Mass Transfer. 51, 399–433 (2007).CrossRefMATH S. Kakaç and B. Bon, “A review of two-phase flow dynamic instabilities in tube boiling systems,” Int. J. Heat Mass Transfer. 51, 399–433 (2007).CrossRefMATH
5.
Zurück zum Zitat S. Bhattacharyya, D. Basu, and P. Das, “Two-phase natural circulation loops: A review of the recent advances,” Heat Transfer Eng. 33, 461–482 (2012).CrossRef S. Bhattacharyya, D. Basu, and P. Das, “Two-phase natural circulation loops: A review of the recent advances,” Heat Transfer Eng. 33, 461–482 (2012).CrossRef
6.
Zurück zum Zitat J. A. Boure, A. E. Bergles, and L. S. Tong, “Review of two-phase flow instability,” Nucl. Eng. Des. 25, 165–192 (1973).CrossRef J. A. Boure, A. E. Bergles, and L. S. Tong, “Review of two-phase flow instability,” Nucl. Eng. Des. 25, 165–192 (1973).CrossRef
7.
Zurück zum Zitat Y. Xiao, F. Guangming, and S. Zhongning, “Study on flow characteristics in an open two-phase natural circulation loop,” Ann. Nucl. Energy 104, 291–300 (2017).CrossRef Y. Xiao, F. Guangming, and S. Zhongning, “Study on flow characteristics in an open two-phase natural circulation loop,” Ann. Nucl. Energy 104, 291–300 (2017).CrossRef
8.
Zurück zum Zitat V. A. Fedorov and O. O. Mil’man, Thermo-Hydraulic Self-Oscillations and Instability in Heat Exchange Systems with Two-Phase Flow (Mosk. Energ. Inst., Moscow, 1998) [in Russian]. V. A. Fedorov and O. O. Mil’man, Thermo-Hydraulic Self-Oscillations and Instability in Heat Exchange Systems with Two-Phase Flow (Mosk. Energ. Inst., Moscow, 1998) [in Russian].
9.
Zurück zum Zitat A. M. Kutepov, L. S. Sterman, and N. G. Styushin, Hydrodynamics and Heat Transfer During Vaporization: Textbook for Higher Education Schools, 3rd ed. (Vysshaya Shkola, Moscow, 1986) [in Russian]. A. M. Kutepov, L. S. Sterman, and N. G. Styushin, Hydrodynamics and Heat Transfer During Vaporization: Textbook for Higher Education Schools, 3rd ed. (Vysshaya Shkola, Moscow, 1986) [in Russian].
10.
Zurück zum Zitat D. A. Labuntsov, Physical Fundamentals of Power Engineering: Selected Works on Heat Transfer, Hydrodynamics, Thermodynamics (Mosk. Energ. Inst., Moscow, 2000) [in Russian]. D. A. Labuntsov, Physical Fundamentals of Power Engineering: Selected Works on Heat Transfer, Hydrodynamics, Thermodynamics (Mosk. Energ. Inst., Moscow, 2000) [in Russian].
11.
Zurück zum Zitat D. A. Labuntsov and V. V. Yagov, Mechanics of Two-Phase Media (Mosk. Energ. Inst., Moscow, 2007) [in Russian]. D. A. Labuntsov and V. V. Yagov, Mechanics of Two-Phase Media (Mosk. Energ. Inst., Moscow, 2007) [in Russian].
12.
Zurück zum Zitat J. A. R. Henry, S. D. Morris, and A. M. MacDonald, “Momentum flux during sub-atmospheric two-phase flow through a pipe,” in Proc. the 7th Int. Heat Transfer Conf., München, Germany, Sept. 6–10, 1982 (Hemisphere, Washington, DC, 1982), Vol. 5, pp. 293–299. J. A. R. Henry, S. D. Morris, and A. M. MacDonald, “Momentum flux during sub-atmospheric two-phase flow through a pipe,” in Proc. the 7th Int. Heat Transfer Conf., München, Germany, Sept. 6–10, 1982 (Hemisphere, Washington, DC, 1982), Vol. 5, pp. 293–299.
13.
Zurück zum Zitat Fluorinert Electronic Liquid FC-723M, 2000, 3M Specialty Materials. Fluorinert Electronic Liquid FC-723M, 2000, 3M Specialty Materials.
14.
Zurück zum Zitat B. S. Petukhov, L. G. Genin, S. A. Kovalev, and S. L. Solov’ev, Heat Transfer in Nuclear Power Units (Mosk. Energ. Inst., Moscow, 2003) [in Russian]. B. S. Petukhov, L. G. Genin, S. A. Kovalev, and S. L. Solov’ev, Heat Transfer in Nuclear Power Units (Mosk. Energ. Inst., Moscow, 2003) [in Russian].
15.
Zurück zum Zitat R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987) [in Russian]. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987) [in Russian].
17.
Zurück zum Zitat Y. Hsu, Teploperedacha 84 (3), 18–29 (1962). Y. Hsu, Teploperedacha 84 (3), 18–29 (1962).
19.
Zurück zum Zitat V. V. Yagov, Heat Transfer in Single-Phase Media and With Phase Transformations (Mosk. Energ. Inst., Moscow, 2014) [in Russian]. V. V. Yagov, Heat Transfer in Single-Phase Media and With Phase Transformations (Mosk. Energ. Inst., Moscow, 2014) [in Russian].
20.
Zurück zum Zitat V. V. Yagov and M. V. Minko, “Heat transfer in two-phase flow at high reduced pressures,” Therm. Eng. 58, 283–294 (2011).CrossRef V. V. Yagov and M. V. Minko, “Heat transfer in two-phase flow at high reduced pressures,” Therm. Eng. 58, 283–294 (2011).CrossRef
21.
Zurück zum Zitat O. N. Kaban’kov, L. A. Sukomel, N. O. Zubov, and V. V. Yagov, “Experimental study of thermo-hydraulic characteristics of natural circulation loop at water and FC-72 boiling under atmospheric pressure,” J. Phys.: Conf. Ser. 891. 012019 (2017). O. N. Kaban’kov, L. A. Sukomel, N. O. Zubov, and V. V. Yagov, “Experimental study of thermo-hydraulic characteristics of natural circulation loop at water and FC-72 boiling under atmospheric pressure,” J. Phys.: Conf. Ser. 891. 012019 (2017).
22.
Zurück zum Zitat O. N. Kaban’kov, L. A. Sukomel, V. V. Yagov, and N. O. Zubov, “Unstable circulation regimes during water boiling in a thermosyphon loop under atmospheric pressure,” Heat Pipe Sci. Technol., Int. J. 7, 31–44 (2016). O. N. Kaban’kov, L. A. Sukomel, V. V. Yagov, and N. O. Zubov, “Unstable circulation regimes during water boiling in a thermosyphon loop under atmospheric pressure,” Heat Pipe Sci. Technol., Int. J. 7, 31–44 (2016).
Metadaten
Titel
Experimental and Calculated Investigation of a Natural Circulation Loop’s Thermal-Hydraulic Characteristics
verfasst von
V. V. Yagov
N. O. Zubov
O. N. Kaban’kov
L. A. Sukomel
Publikationsdatum
01.07.2019
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 7/2019
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519070103

Weitere Artikel der Ausgabe 7/2019

Thermal Engineering 7/2019 Zur Ausgabe

STEAM TURBINE, GAS TURBINE, COMBINED-CYCLE POWER PLANTS, AND THEIR AUXILIARY EQUIPMENT

Features of the Vortex Flow Structure around a One Fin Shroud

STEAM BOILERS, POWER FUEL, BURNERS, AND BOILER AUXILIARY EQUIPMENT

An Approximate Model of Heat Treatment and Ignition of Coal in Small Cyclones

    Premium Partner