Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2013

Open Access 01.12.2013 | Research

q-Bernstein-Schurer-Kantorovich Operators

verfasst von: Mehmet Ali Özarslan, Tuba Vedi

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2013

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In the present paper, we introduce the q-Bernstein-Schurer-Kantorovich operators. We give the Korovkin-type approximation theorem and obtain the rate of convergence of this approximation by means of the first and the second modulus of continuity. Moreover, we compute the order of convergence of the operators in terms of the elements of Lipschitz class functions and the modulus of continuity of the derivative of the function.
MSC: 41A10, 41A25, 41A36.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors completed the paper together. All authors read and approved the final manuscript.

1 Introduction

Some authors have defined general sequences of linear positive operators where the classical sequences can be achieved as particular cases. For instance, Schurer [1] proposed the following generalization of Bernstein operators in 1962. Let C [ a , b ] denote the space of a continuous function on [ a , b ] . For all n N , f C [ 0 , p + 1 ] and fixed p N 0 = { 0 , 1 , 2 , } , the Bernstein-Schurer operators are defined by (see also, [2])
B n p ( f ; x ) = r = 0 n + p f ( r n ) ( n + p r ) x r ( 1 x ) n + p r , x [ 0 , 1 ] .
In 1987, q-based Bernstein operators were defined and studied by Lupaş [3]. In 1996, another q-based Bernstein operator was proposed by Phillips [4]. Then the q-based operators have become an active research area (see [59] and [10]).
Muraru [11] introduced and investigated the q-Bernstein-Schurer operators. She obtained the Korovkin-type approximation theorem and the rate of convergence of the operators in terms of the first modulus of continuity. These operators were defined, for fixed p N 0 and for all x [ 0 , 1 ] , by
B n p ( f ; q ; x ) = r = 0 n + p f ( [ r ] [ n ] ) [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) ,
(1.1)
where 0 < q < 1 . If we choose p = 0 in (1.1), we get the classical q-Bernstein operators [4].
Recall that for each nonnegative integer r, [ r ] is defined as
[ r ] = { ( 1 q r ) / ( 1 q ) , q 1 , r , q = 1 ,
and the q-factorial of the integer r is defined by
[ r ] ! = { [ r ] [ r 1 ] [ 1 ] , r = 1 , 2 , 3 , , 1 , r = 0 .
For integers n and r, with 0 r n , q-binomial coefficients are defined by [12]
[ n r ] = [ n ] ! [ n r ] ! [ r ] ! .
Afterwards, several properties and results of the operators defined by (1.1), such as the order of convergence of these operators by means of Lipschitz class functions, the first and the second modulus of continuity and the rate of convergence of the approximation process in terms of the first modulus of continuity of the derivative of the function, were given by the authors [13]. On the other hand, q-Szasz-Schurer operators were discussed in [14].
Kantorovich considered the linear positive operators K n ( f ; x ) : L 1 [ 0 , 1 ] L 1 [ 0 , 1 ] which are defined for f L 1 [ 0 , 1 ] as follows:
K n ( f ; x ) = ( n + 1 ) k = 0 n p n , k ( x ) k / n + 1 ( k + 1 ) / ( n + 1 ) f ( u ) d u ,
where p n , k ( x ) = ( n k ) x k ( 1 x ) n k . After this definition, the integral variants of classical and general operators have attracted a great interest (see [1518] and [19]).
In 2007, Dalmanoğlu defined Kantorovich-type q-Bernstein operators by [20]
B n ( f ; q ; x ) = [ n + 1 ] k = 0 n q k [ n k ] x k s = 0 n k 1 ( 1 q s x ) [ k ] / [ n + 1 ] [ k + 1 ] / [ n + 1 ] f ( t ) d q t .
Notice that, the q-Jackson integral is defined on the interval [ 0 , b ] as follows:
0 b f ( t ) d q t = ( 1 q ) b j = 0 f ( q j b ) q j , 0 < q < 1 .
(1.2)
Then she obtained the first three moments and gave the rate of convergence of the approximation process in terms of the first modulus of continuity [20].
In our definition, the integral that we consider in the q-Schurer-Bernstein-Kantorovich operator is
0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) k d q t , k N 0 , 0 < q < 1 .
So, throughout this paper, we will use the following results, which are computed directly by the tools of q-calculus.
Using (1.2), we can find the following results:
0 1 d q t = ( 1 q ) j = 0 q j = ( 1 q ) 1 1 q = 1 ,
(1.3)
where 0 < q < 1 . On the other hand, by (1.2) and (1.3) we get
0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) d q t = 1 + ( q 1 ) [ r ] [ n + 1 ] 0 1 t d q t + [ r ] [ n + 1 ] 0 1 d q t = 1 [ n + 1 ] ( 1 q ) j = 0 q 2 j + q [ r ] [ n + 1 ] = 1 [ n + 1 ] ( 1 q ) 1 1 q 2 + q [ r ] [ n + 1 ] = 1 [ 2 ] [ n + 1 ] + 2 q [ r ] [ 2 ] [ n + 1 ] .
(1.4)
Since
0 1 t 2 d q t = ( 1 q ) j = 0 q 2 j q j = ( 1 q ) 1 1 q 3 = 1 1 + q + q 2 = 1 [ 3 ] ,
we have
0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) 2 d q t = 0 1 ( [ r ] 2 [ n + 1 ] 2 + 2 [ r ] ( 1 + ( q 1 ) [ r ] ) [ n + 1 ] 2 t + ( 1 + ( q 1 ) [ r ] ) 2 [ n + 1 ] 2 t 2 ) d q t = 1 [ n + 1 ] 2 ( ( 1 + ( q 1 ) [ r ] ) 2 0 1 t 2 d q t + 2 [ r ] ( 1 + ( q 1 ) [ r ] ) 0 1 t d q t + [ r ] 2 0 1 d q t ) = 1 [ n + 1 ] 2 { ( 1 + 2 ( q 1 ) [ 2 ] + ( q 1 ) 2 [ 3 ] ) [ r ] 2 + ( 2 [ 2 ] + 2 ( q 1 ) [ 3 ] ) [ r ] + 1 [ 3 ] } .
(1.5)
Recall that the first three moments of the q-Bernstein-Schurer operators were given by Muraru in [11] as follows.
Lemma 1.1 For the first three moments of B n p ( f ; q ; x ) we have:
(i)
B n p ( 1 ; q ; x ) = 1 ,
 
(ii)
B n p ( t ; q ; x ) = [ n + p ] [ n ] x ,
 
(iii)
B n p ( t 2 ; q ; x ) = [ n + p 1 ] [ n + p ] [ n ] 2 q x 2 + [ n + p ] [ n ] 2 x .
 
We organize the paper as follows.
Firstly, in section two, we define the q-Bernstein-Schurer-Kantorovich operators and obtain the moments of them. In section three, we obtain the rate of convergence of the q-Bernstein-Schurer-Kantorovich operators in terms of the first modulus of continuity. Also we give the order of approximation by means of Lipschitz class functions and the first and the second modulus of continuity. Furthermore, we compute the degree of convergence of the approximation process in terms of the first modulus of continuity of the derivative of the function.

2 Construction of the operators

For fixed p N 0 , we introduce the q-Bernstein-Schurer-Kantorovich operators K n p ( f ; q ; x ) : C [ 0 , p + 1 ] C [ 0 , 1 ]
K n p ( f ; q ; x ) = r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) 0 1 f ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) d q t
(2.1)
for any real number 0 < q < 1 , and f C [ 0 , p + 1 ] . It is clear that K n p ( f ; q ; x ) is a linear and positive operator for x [ 0 , 1 ] .
For the first three moments and the first and the second central moment, we state the following lemma.
Lemma 2.1 For the q-Bernstein-Schurer-Kantorovich operators we have
(i)
K n p ( 1 ; q ; x ) = 1 ,
 
(ii)
K n p ( u ; q ; x ) = 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] ,
 
(iii)
K n p ( u 2 ; q ; x ) = 1 [ n + 1 ] 2 { ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] ) [ n + p 1 ] [ n + p ] x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] ) [ n + p ] x + 1 [ 3 ] } ,
 
(iv)
K n p ( ( u x ) ; q ; x ) = ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] ,
 
(v)
K n p ( ( u x ) 2 ; q ; x ) = ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 4 [ n + p ] [ 2 ] [ n + 1 ] q + 1 ) x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] 2 [ 2 ] [ n + 1 ] ) x + 1 [ 3 ] [ n + 1 ] 2 .
 
Proof (i) From (1.3), we get
K n p ( 1 ; q ; x ) = r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) = 1 .
(ii)
Using (1.1), (1.4) and Lemma 1.1, we have
K n p ( u ; q ; x ) = r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) ( 1 [ 2 ] [ n + 1 ] + 2 q [ r ] [ 2 ] [ n + 1 ] ) = 1 [ 2 ] [ n + 1 ] r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) + r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) 2 q [ r ] [ 2 ] [ n + 1 ] [ n ] [ n ] = 1 [ 2 ] [ n + 1 ] + 2 q [ n ] [ 2 ] [ n + 1 ] B n q ( t ; q ; x ) = 1 [ 2 ] [ n + 1 ] + 2 q [ n ] [ 2 ] [ n + 1 ] [ n + p ] [ n ] x = 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] .
 
(iii)
From (1.1), (1.4), (1.5) and then Lemma 1.1, we can calculate the K n p ( u 2 ; q ; x ) as follows:
K n p ( u 2 ; q ; x ) = 1 [ n + 1 ] 2 { r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) ( 1 + 2 ( q 1 ) [ 2 ] + ( q 1 ) 2 [ 3 ] ) [ r ] 2 + r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) ( 2 [ 2 ] + 2 ( q 1 ) [ 3 ] ) [ r ] + r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) 1 [ 3 ] } = 1 [ n + 1 ] 2 { ( 3 q 1 [ 2 ] + ( q 1 ) 2 [ 3 ] ) r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) [ r ] 2 [ n ] 2 [ n ] 2 + ( 2 [ 2 ] + 2 ( q 1 ) [ 3 ] ) r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) [ r ] [ n ] [ n ] + 1 [ 3 ] r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) } = 1 [ n + 1 ] 2 { 1 [ 3 ] + ( 2 [ 2 ] + 2 ( q 1 ) [ 3 ] ) [ n ] r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) [ r ] [ n ] + ( 3 q 1 [ 2 ] + ( q 1 ) 2 [ 3 ] ) [ n ] 2 r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) [ r ] 2 [ n ] 2 } = 1 [ n + 1 ] 2 { 1 [ 3 ] + ( 2 [ 2 ] + 2 ( q 1 ) [ 3 ] ) [ n ] B n p ( t ; q ; x ) + ( 3 q 1 [ 2 ] + ( q 1 ) 2 [ 3 ] ) [ n ] 2 B n p ( t 2 ; q ; x ) } .
 
Finally, we get
K n p ( u 2 ; q ; x ) = 1 [ n + 1 ] 2 { ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] ) [ n + p 1 ] [ n + p ] x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] ) [ n + p ] x + 1 [ 3 ] } ,
where B n p ( t ; q ; x ) and B n p ( t 2 ; q ; x ) are the corresponding moments of the q-Bernstein-Schurer operators.
(iv)
It is obvious that
K n p ( ( u x ) ; q ; x ) = K n p ( u ; q ; x ) x K n p ( 1 ; q ; x ) = ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] .
 
(v)
Direct calculations yield,
K n p ( ( u x ) 2 ; q ; x ) = K n p ( u 2 ; q ; x ) 2 x K n p ( u ; q ; x ) + x 2 K n p ( 1 ; q ; x ) = 1 [ n + 1 ] 2 { ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] ) [ n + p 1 ] [ n + p ] x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] ) [ n + p ] x + 1 [ 3 ] } 2 x 2 [ n + p ] q x + 1 [ n + 1 ] [ 2 ] + x 2 = ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 4 [ n + p ] [ 2 ] [ n + 1 ] q + 1 ) x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] 2 [ 2 ] [ n + 1 ] ) x + 1 [ 3 ] [ n + 1 ] 2 .
(2.2)
 
By Korovkin’s theorem, we can state the following theorem. □
Theorem 2.2 For all f C [ 0 , p + 1 ] , we have
lim n K n p ( f ; q n , ) f ( ) C [ 0 , 1 ] = 0
provided that q : = q n with lim n q n = 1 and that lim n 1 [ n ] = 0 .

3 Rate of convergence

In this section, we compute the rate of convergence of the operators in terms of the modulus of continuity, elements of Lipschitz classes and the first and the second modulus of continuity of the function. Furthermore, we calculate the rate of convergence in terms of the first modulus of continuity of the derivative of the function.
Now, we give the rate of convergence of the operators by means of the first modulus of continuity. Recall that the first modulus of continuity of f on the interval C [ 0 , p + 1 ] for δ > 0 is given by
ω ( f , δ ) = max | h | < δ x , x + h [ 0 , p + 1 ] | Δ h f ( x ) | = max | h | < δ x , x + h [ 0 , p + 1 ] | f ( x + h ) f ( x ) |
or equivalently,
ω ( f , δ ) = max | t x | < δ t , x [ 0 , p + 1 ] | f ( t ) f ( x ) | .
(3.1)
It is known that for all f C [ 0 , p + 1 ] , we have
lim δ 0 + ω ( f , δ ) = 0
and for any δ > 0 ,
| f ( x ) f ( y ) | ω ( f , δ ) ( | x y | δ + 1 ) .
Theorem 3.1 Let 0 < q < 1 . If f C [ 0 , p + 1 ] , we have
| K n p ( f ; q ; x ) f ( x ) | 2 ω ( f , δ n , q ( x ) ) ,
where ω ( f , ) is the modulus of continuity of f and δ n , q ( x ) : = K n p ( ( u x ) 2 ; q ; x ) , which is given as Lemma 2.1.
Proof Using the linearity and positivity of the operator, we get
| K n p ( f ; q ; x ) f ( x ) | = | r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) 0 1 ( f ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) f ( x ) ) d q t | r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) 0 1 | f ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) f ( x ) | d q t r = 0 n + p 0 1 ( | [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x | δ + 1 ) ω ( f , δ ) [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t = ω ( f , δ ) ( r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) ) + ω ( f , δ ) δ ( r = 0 n + p 0 1 | [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x | [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t ) .
By the Cauchy-Schwarz inequality,
0 1 | ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) x | d q t { 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 d q t } 1 2 { 0 1 1 d q t } 1 2 = { 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 d q t } 1 2 : = { a n , r ( x ) } 1 2 .
Now we have
| K n p ( f ; q ; x ) f ( x ) | ω ( f , δ ) + ω ( f , δ ) δ r = 0 n + p { a n , r ( x ) } 1 2 p n , r ( q ; x ) ,
where p n , r ( q ; x ) = [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) . Again applying the Cauchy-Schwarz inequality, we get
| K n p ( f ; q ; x ) f ( x ) | ω ( f , δ ) + ω ( f , δ ) δ { r = 0 n + p a n , r ( x ) p n , r ( q ; x ) } 1 2 { r = 0 n + p p n , r ( q ; x ) } 1 2 = ω ( f , δ ) + ω ( f , δ ) δ { r = 0 n + p p n , r ( q ; x ) 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 d q t } 1 2 = ω ( f , δ ) + ω ( f , δ ) δ [ K n p ( ( u x ) 2 ; q ; x ) ] 1 2 .
So, we have
| K n p ( f ; q ; x ) f ( x ) | ω ( f , δ ) + ω ( f , δ ) δ { K n p ( ( u x ) 2 ; q ; x ) } 1 / 2 .
Choosing δ : δ n , q ( x ) = K n p ( ( u x ) 2 ; q ; x ) , we obtain
| K n p ( f ; q ; x ) f ( x ) | 2 ω ( f , K n p ( ( u x ) 2 ; q ; x ) ) .
The proof is concluded. □
Now we give the rate of convergence of the operators K n p in terms of the Lipschitz class Lip M ( α ) , for 0 < α 1 . Note that a function f C [ 0 , p + 1 ] belongs to Lip M ( α ) if
| f ( t ) f ( x ) | M | t x | α ( t , x [ 0 , p + 1 ] )
(3.2)
is satisfied.
Theorem 3.2 Let f Lip M ( α ) , then
| K n p ( f ; q ; x ) f ( x ) | M ( δ n , q ( x ) ) α 2 ,
where δ n , q ( x ) is the same as in Theorem 3.1.
Proof By the linearity and positivity, we have
| K n p ( f ; q ; x ) f ( x ) | r = 0 n + p [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) 0 1 | f ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) f ( x ) | d q t .
Considering (3.2) and then applying the Hölder’s inequality with p = 2 α and q = 2 2 α , we get
0 1 | f ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) f ( x ) | d q t M 0 1 | [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x | α d q t M { 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 d q t } α 2 { 0 1 1 d q t } 2 α 2 = M { 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 d q t } α 2 = M { a n , r ( x ) } α 2 .
So, we have
| K n p ( f ; q ; x ) f ( x ) | M r = 0 n + p { a n , r ( x ) } α 2 p n , r ( q ; x ) ,
where p n , r ( q ; x ) = [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) . Again applying Hölder’s inequality with p = 2 α and q = 2 2 α , we get
| K n p ( f ; q ; x ) f ( x ) | M { r = 0 n + p a n , r ( x ) p n , r ( q ; x ) } α 2 { r = 0 n + p 1 p n , r ( q ; x ) } 2 α 2 = M { r = 0 n + p p n , r ( q ; x ) 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 d q t } α 2 = M [ K n p ( ( u x ) 2 ; q ; x ) ] α 2 .
Hence, the desired result is obtained. □
Now let us denote by C 2 [ 0 , p + 1 ] the space of all functions f C [ 0 , p + 1 ] such that f , f C [ 0 , p + 1 ] . Let f denote the usual supremum norm of f. The classical Peetre’s K-functional and the second modulus of smoothness of the function f C [ 0 , p + 1 ] are defined, respectively, by
K ( f , δ ) : = inf g C 2 [ 0 , p + 1 ] [ f g + δ g ]
and
ω 2 ( f , δ ) : = sup 0 < h < δ , x , x + h [ 0 , p + 1 ] | f ( x + 2 h ) 2 f ( x + h ) + f ( x ) | ,
where δ > 0 . It is known that [[21], p.177] there exists a constant A > 0 such that
K ( f , δ ) A ω 2 ( f , δ ) .
(3.3)
Theorem 3.3 Let q ( 0 , 1 ) , x [ 0 , 1 ] and f C [ 0 , p + 1 ] . Then, for fixed p N 0 , we have
| K n p ( f ; q ; x ) f ( x ) | C ω 2 ( f , α n , q ( x ) ) + ω ( f , β n , q ( x ) )
for some positive constant C, where
α n , q ( x ) : = ( 4 [ n + p ] 2 [ 2 ] 2 [ n + 1 ] 2 q 2 + 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 8 [ n + p ] [ 2 ] [ n + 1 ] q + 2 ) x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] + 4 [ n + p ] [ 2 ] 2 [ n + 1 ] 2 q 4 [ 2 ] [ n + 1 ] ) x + 1 [ 3 ] [ n + 1 ] 2 + 1 [ 2 ] 2 [ n + 1 ] 2
(3.4)
and
β n , q ( x ) : = ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] .
(3.5)
Proof Define an auxiliary operator K n , p ( f ; q ; x ) : C [ 0 , p + 1 ] C [ 0 , 1 ] by
K n , p ( f ; q ; x ) : = K n p ( f ; q ; x ) f ( 1 [ 2 ] [ n + 1 ] ( 2 [ n + p ] q x + 1 ) ) + f ( x ) .
(3.6)
Then, by Lemma 2.1, we get
K n , p ( 1 ; q ; x ) = 1 , K n , p ( ( u x ) ; q ; x ) = 0 .
(3.7)
Then, for a given g C 2 [ 0 , p + 1 ] , it follows by the Taylor formula that
g ( y ) g ( x ) = ( y x ) g ( x ) + x y ( y u ) g ( u ) d u , y [ 0 , 1 ] .
Taking into account (3.7) and using (3.7), we get, for every x ( 0 , 1 ) , that
| K n , p ( g ; q ; x ) g ( x ) | = | K n , p ( g ( y ) g ( x ) ; q ; x ) | = | g ( x ) K n , p ( ( u x ) ; q ; x ) + K n , p ( x y ( y u ) g ( u ) d u ; q ; x ) | = | K n , p ( x y ( y u ) g ( u ) d u ; q ; x ) | .
Then by (3.6),
| K n , p ( g ; q ; x ) g ( x ) | = | K n , p ( x y ( y u ) g ( u ) d u ; q ; x ) x 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] ( 2 [ n + p ] q x + 1 [ n + 1 ] [ 2 ] u ) g ( u ) d u | | K n , p ( x y ( y u ) g ( u ) d u ; q ; x ) | + | x 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] ( 2 [ n + p ] q x + 1 [ n + 1 ] [ 2 ] u ) g ( u ) d u | .
Since
| K n p ( x y ( y u ) g ( u ) d u ; q ; x ) | g K n p ( ( y x ) 2 ; q ; x )
and
| x 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] ( 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] u ) g ( u ) d u | g ( ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] ) 2 ,
we get
| K n , p ( g ; q ; x ) g ( x ) | g K n p ( ( y x ) 2 ; q ; x ) + g ( ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] ) 2 .
Hence Lemma 2.1 implies that
| K n , p ( g ; q ; x ) g ( x ) | g [ x 2 ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 4 [ n + p ] [ 2 ] [ n + 1 ] q + 1 ) + x ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] 2 [ 2 ] [ n + 1 ] ) + 1 [ 3 ] [ n + 1 ] 2 + ( ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] ) 2 ] .
(3.8)
Since K n , p ( f ; q ; ) 3 , considering (3.4) and (3.5), for all f C [ 0 , p + 1 ] and g C 2 [ 0 , p + 1 ] , we may write from (3.8) that
| K n p ( f ; q ; x ) f ( x ) | | K n , p ( f g ; q ; x ) ( f g ) ( x ) | + | K n , p ( g ; q ; x ) g ( x ) | + | f ( 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] ) f ( x ) | 4 f g + α n , q ( x ) g + | f ( 2 [ n + p ] q x + 1 [ 2 ] [ n + 1 ] ) f ( x ) | 4 ( f g + α n , q ( x ) g ) + ω ( f , β n , q ( x ) ) ,
which yields that
| K n p ( f ; q ; x ) f ( x ) | 4 K ( f , α n , q ( x ) ) + ω ( f , β n , q ( x ) ) C ω 2 ( f , α n , q ( x ) ) + ω ( f , β n , q ( x ) ) ,
where
α n , q ( x ) : = [ ( 4 [ n + p ] 2 [ 2 ] 2 [ n + 1 ] 2 q 2 + 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 8 [ n + p ] [ 2 ] [ n + 1 ] q + 2 ) x 2 + x ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] + 4 [ n + p ] [ 2 ] 2 [ n + 1 ] 2 q 4 [ 2 ] [ n + 1 ] ) + 1 [ 3 ] [ n + 1 ] 2 + 1 [ 2 ] 2 [ n + 1 ] 2 ]
and
β n , q ( x ) : = ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] .
Hence we get the result. □
Now, we compute the rate of convergence of the operators K n p in terms of the modulus of continuity of the derivative of the function.
Theorem 3.4 Let 0 < q < 1 and p N 0 be fixed. If f ( x ) has a continuous derivative f ( x ) and ω ( f , δ ) is the modulus of continuity of f ( x ) on [ 0 , p + 1 ] , then
| K n p ( f ; q ; x ) f ( x ) | M ρ n , q ( x ) + ω ( f , δ ) ( 1 + δ n , q , p ( x ) ) ,
where M is a positive constant such that | f ( x ) | M ( 0 x p + 1 ),
δ n , q , p ( x ) = [ ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 4 [ n + p ] [ 2 ] [ n + 1 ] q + 1 ) x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] 2 [ 2 ] [ n + 1 ] ) x + 1 [ 3 ] [ n + 1 ] 2 ]
and
ρ n , q ( x ) = ( 2 [ n + p ] [ 2 ] [ n + 1 ] q 1 ) x + 1 [ 2 ] [ n + 1 ] .
(3.9)
Proof Using the mean value theorem, we have
f ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t ) f ( x ) = ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) f ( ξ ) = ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) f ( x ) + ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) ( f ( ξ ) f ( x ) ) ,
where x < ξ < [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t . Hence, we have
| K n p ( f ; q ; x ) f ( x ) | = | f ( x ) r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t + r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) × ( f ( ξ ) f ( x ) ) [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t | | f ( x ) | K n p ( ( u x ) ; q ; x ) + r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) × | f ( ξ ) f ( x ) | [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t M ρ n , q ( x ) + r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) × | f ( ξ ) f ( x ) | [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t ,
where ρ n , q ( x ) is given in (3.9). Hence,
| K n p ( f ; q ; x ) f ( x ) | M ρ n , q ( x ) + r = 0 n + p 0 1 ω ( f , δ ) ( ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) δ + 1 ) × ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t
since,
ξ x [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x .
From the Cauchy-Schwarz inequality, for the first term, we get
| K n p ( f ; q ; x ) f ( x ) | M ρ n , q ( x ) + ω ( f , δ ) r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t + ω ( f , δ ) δ r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t M ρ n , q ( x ) + ω ( f , δ ) ( r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 × [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t ) 1 / 2 + ω ( f , δ ) δ r = 0 n + p 0 1 ( [ r ] [ n + 1 ] + 1 + ( q 1 ) [ r ] [ n + 1 ] t x ) 2 [ n + p r ] x r s = 0 n + p r 1 ( 1 q s x ) d q t = M ρ n , q ( x ) + ω ( f , δ ) K n p ( ( u x ) 2 ; q ; x ) + ω ( f , δ ) δ K n p ( ( u x ) 2 ; q ; x ) = M ρ n , q ( x ) + ω ( f , δ ) ( 1 + δ n , q , p ( x ) ) ,
where
δ : = δ n , q , p ( x ) = [ ( 4 q 4 + q 3 + q 2 [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p 1 ] [ n + p ] 4 [ n + p ] [ n + 1 ] [ 2 ] q + 1 ) x 2 + ( 4 q 3 + 5 q 2 + 3 q [ 2 ] [ 3 ] [ n + 1 ] 2 [ n + p ] 2 [ 2 ] [ n + 1 ] ) x + 1 [ 3 ] [ n + 1 ] 2 ] .
Finally, we have
| K n p ( f ; q ; x ) f ( x ) | M ρ n , q ( x ) + ω ( f , δ ) ( 1 + δ n , q , p ( x ) ) .
This completes the proof. □

4 Concluding remarks

In this paper, we obtain many results in the pointwise sense. On the other hand, we see that the interval is bounded and closed, and also f is continuous on it, so these results can be given in the uniform sense.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors completed the paper together. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Schurer, F: Linear Positive Operators in Approximation Theory. Math. Inst., Techn. Univ. Delf Report (1962) Schurer, F: Linear Positive Operators in Approximation Theory. Math. Inst., Techn. Univ. Delf Report (1962)
2.
Zurück zum Zitat Barbosu D: A survey on the approximation properties of Schurer-Stancu operators. Carpath. J. Math. 2004, 20: 1–5.MATHMathSciNet Barbosu D: A survey on the approximation properties of Schurer-Stancu operators. Carpath. J. Math. 2004, 20: 1–5.MATHMathSciNet
3.
Zurück zum Zitat Lupaş AA: q -Analogue of the Bernstein operators. 9. Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca 1987, 85–92. Lupaş AA: q -Analogue of the Bernstein operators. 9. Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca 1987, 85–92.
4.
Zurück zum Zitat Phillips GM: On generalized bernstein polynomials. 98. In Numerical Analysis. World Scientific, River Edge; 1996:263–269.CrossRef Phillips GM: On generalized bernstein polynomials. 98. In Numerical Analysis. World Scientific, River Edge; 1996:263–269.CrossRef
5.
Zurück zum Zitat Büyükyazıcı İ, Sharma H: Approximation properties of two-dimensional q -Bernstein-Chlodowsky-Durrmeyer operators. Numer. Funct. Anal. Optim. 2012, 33(2):1351–1371.MATHMathSciNet Büyükyazıcı İ, Sharma H: Approximation properties of two-dimensional q -Bernstein-Chlodowsky-Durrmeyer operators. Numer. Funct. Anal. Optim. 2012, 33(2):1351–1371.MATHMathSciNet
6.
Zurück zum Zitat Büyükyazıcı İ, Atakurt Ç: On Stancu type generalization of q -Baskakov operators. Math. Comput. Model. 2010, 52(5–6):752–759. 10.1016/j.mcm.2010.05.004MATHCrossRef Büyükyazıcı İ, Atakurt Ç: On Stancu type generalization of q -Baskakov operators. Math. Comput. Model. 2010, 52(5–6):752–759. 10.1016/j.mcm.2010.05.004MATHCrossRef
7.
Zurück zum Zitat Gupta V, Finta Z: On certain q -Durrmeyer type operators. Appl. Math. Comput. 2009, 209(2):415–420. 10.1016/j.amc.2008.12.071MATHMathSciNetCrossRef Gupta V, Finta Z: On certain q -Durrmeyer type operators. Appl. Math. Comput. 2009, 209(2):415–420. 10.1016/j.amc.2008.12.071MATHMathSciNetCrossRef
8.
Zurück zum Zitat Mahmudov NI, Sabancıgil P: q -Parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008., 2008: Article ID 816367 Mahmudov NI, Sabancıgil P: q -Parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008., 2008: Article ID 816367
9.
Zurück zum Zitat Ostrovska S: q -Bernstein polynomials and their iterates. J. Approx. Theory 2003, 123: 232–255. 10.1016/S0021-9045(03)00104-7MATHMathSciNetCrossRef Ostrovska S: q -Bernstein polynomials and their iterates. J. Approx. Theory 2003, 123: 232–255. 10.1016/S0021-9045(03)00104-7MATHMathSciNetCrossRef
10.
Zurück zum Zitat Wang H, Wu XZ: Saturation of convergence for q -Bernstein polynomials in the case q > 1 . J. Math. Anal. Appl. 2008, 337: 744–750. 10.1016/j.jmaa.2007.04.014MATHMathSciNetCrossRef Wang H, Wu XZ: Saturation of convergence for q -Bernstein polynomials in the case q > 1 . J. Math. Anal. Appl. 2008, 337: 744–750. 10.1016/j.jmaa.2007.04.014MATHMathSciNetCrossRef
11.
Zurück zum Zitat Muraru CV: Note on q -Bernstein-Schurer operators. Stud. Univ. Babeş–Bolyai, Math. 2011, 56: 489–495.MathSciNet Muraru CV: Note on q -Bernstein-Schurer operators. Stud. Univ. Babeş–Bolyai, Math. 2011, 56: 489–495.MathSciNet
13.
Zurück zum Zitat Vedi T, Özarslan MA: Some properties of q -Bernstein-Schurer operators. J. Appl. Funct. Anal. 2013, 8(1):45–53.MATHMathSciNet Vedi T, Özarslan MA: Some properties of q -Bernstein-Schurer operators. J. Appl. Funct. Anal. 2013, 8(1):45–53.MATHMathSciNet
14.
15.
Zurück zum Zitat Duman O, Özarslan MA, Doğru O: On integral type generalizations of positive linear operators. Stud. Math. 2006, 176(1):1–12. 10.4064/sm176-1-1CrossRef Duman O, Özarslan MA, Doğru O: On integral type generalizations of positive linear operators. Stud. Math. 2006, 176(1):1–12. 10.4064/sm176-1-1CrossRef
16.
Zurück zum Zitat Duman O, Özarslan MA, Vecchia BD: Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions. Turk. J. Math. 2009, 33(2):151–158.MATH Duman O, Özarslan MA, Vecchia BD: Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions. Turk. J. Math. 2009, 33(2):151–158.MATH
17.
Zurück zum Zitat Özarslan MA, Duman O: Global approximation properties of modified SMK operators. Filomat 2010, 24(1):47–61. 10.2298/FIL1001047OMATHMathSciNetCrossRef Özarslan MA, Duman O: Global approximation properties of modified SMK operators. Filomat 2010, 24(1):47–61. 10.2298/FIL1001047OMATHMathSciNetCrossRef
18.
Zurück zum Zitat Özarslan MA, Duman O: Local approximation behavior of modified SMK operators. Miskolc Math. Notes 2010, 11(1):87–99.MATHMathSciNet Özarslan MA, Duman O: Local approximation behavior of modified SMK operators. Miskolc Math. Notes 2010, 11(1):87–99.MATHMathSciNet
19.
Zurück zum Zitat Özarslan MA, Duman O, Srivastava HM: Statistical approximation results for Kantorovich-type operators involving some special functions. Math. Comput. Model. 2008, 48(3–4):388–401. 10.1016/j.mcm.2007.08.015MATHCrossRef Özarslan MA, Duman O, Srivastava HM: Statistical approximation results for Kantorovich-type operators involving some special functions. Math. Comput. Model. 2008, 48(3–4):388–401. 10.1016/j.mcm.2007.08.015MATHCrossRef
20.
Zurück zum Zitat Dalmanoğlu Ö: Approximation by Kantorovich type q -Bernstein operators. MATH’07: Proceedings of the 12th WSEAS Intenational Conference on Applied Mathematics Egypt, 2007, 29–31. Dalmanoğlu Ö: Approximation by Kantorovich type q -Bernstein operators. MATH’07: Proceedings of the 12th WSEAS Intenational Conference on Applied Mathematics Egypt, 2007, 29–31.
21.
Metadaten
Titel
q-Bernstein-Schurer-Kantorovich Operators
verfasst von
Mehmet Ali Özarslan
Tuba Vedi
Publikationsdatum
01.12.2013
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2013
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2013-444

Weitere Artikel der Ausgabe 1/2013

Journal of Inequalities and Applications 1/2013 Zur Ausgabe

Premium Partner