Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2014

Open Access 01.12.2014 | Research

Estimates for fractional type Marcinkiewicz integrals with non-doubling measures

verfasst von: Guanghui Lu, Jiang Zhou

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2014

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Under the assumption that μ is a non-doubling measure on R d satisfying the growth condition, the authors prove that the fractional type Marcinkiewicz integral ℳ is bounded from the Hardy space H fin 1 , , 0 ( μ ) to the Lebesgue space L q ( μ ) for 1 q = 1 α n with kernel satisfying a certain Hörmander-type condition. In addition, the authors show that for p = n α , ℳ is bounded from the Morrey space M q p ( μ ) to the space RBMO ( μ ) and from the Lebesgue space L n α ( μ ) to the space RBMO ( μ ) .
MSC:46A20, 42B25, 42B35.
Hinweise

Competing interests

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

Let μ be a nonnegative Radon measure on R d which satisfies the following growth condition: for all x R d and all r > 0 ,
μ ( B ( x , r ) ) C 0 r n ,
(1.1)
where C 0 and n are positive constants and n ( 0 , d ] , B ( x , r ) is the open ball centered at x and having radius r. So μ is claimed to be non-doubling measure. If there exists a positive constant C such that for any x supp ( μ ) and r > 0 , μ ( B ( x , 2 r ) ) C μ ( B ( x , r ) ) , the μ is said to be doubling measure. It is well known that the doubling condition on underlying measures is a key assumption in the classical theory of harmonic analysis. Especially, in recent years, many classical results concerning the theory of Calderón-Zygmund operators and function spaces have been proved still valid if the underlying measure is a nonnegative Radon measure on R d which only satisfies (1.1) (see [18]). The motivation for developing the analysis with non-doubling measures and some examples of non-doubling measures can be found in [9]. We only point out that the analysis with non-doubling measures played a striking role in solving the long-standing open Painlevé’s problem by Tolsa in [10].
Let K ( x , y ) be a μ-locally integrable function on R d × R d { ( x , y ) : x = y } . Assume that there exists a positive constant C such that for any x , y R d with x y ,
| K ( x , y ) | C | x y | ( n 1 ) ,
(1.2)
and for any x , y , y R d ,
| x y | 2 | y y | [ | K ( x , y ) K ( x , y ) | + | K ( y , x ) K ( y , x ) | ] 1 | x y | d μ ( x ) C .
(1.3)
The fractional type Marcinkiewicz integral ℳ associated to the above kernel K ( x , y ) and the measure μ as in (1.1) is defined by
M ( f ) ( x ) = ( 0 | | x y | t K ( x , y ) | x y | α f ( y ) d μ ( y ) | 2 d t t 3 ) 1 2 , x R d , 0 < α < n .
(1.4)
If μ is the d-dimensional Lebesgue measure in R d , and
K ( x , y ) = Ω ( x y ) | x y | n 1 ,
(1.5)
with Ω homogeneous of degree zero and Ω Lip γ ( S d 1 ) for some γ ( 0 , 1 ] , then K satisfies (1.2) and (1.3). Under these conditions, ℳ in (1.4) is introduced by Si et al. in [11]. As a special case, by letting α = 0 , we recapture the classical Marcinkiewicz integral operators that Stein introduced in 1958 (see [12]). Since then, many works have appeared about Marcinkiewicz type integral operators. A nice survey has been given by Lu in [13].
In 2007, the Hörmander-type condition was introduced by Hu et al. in [14], which was slightly stronger than (1.3) and was defined as follows:
sup > 0 , y , y R d | y y | k = 1 k 2 k < | x y | 2 k + 1 [ | K ( x , y ) K ( x , y ) | + | K ( y , x ) K ( y , x ) | ] 1 | x y | d μ ( x ) C .
(1.6)
However, in this paper, we discover that the kernel should satisfy some other kind of smoothness condition to replace (1.6).
Definition 1.1 Let 1 s < , 0 < ε < 1 . The kernel K is said to satisfy a Hörmander-type condition if there exist c s > 1 and C s > 0 such that for any x R d and > c s | x | ,
sup > 0 , y , y R d | y y | k = 1 2 k ε ( 2 k ) n ( 1 ( 2 k ) n 2 k < | x y | 2 k + 1 [ ( | K ( x , y ) K ( x , y ) | + | K ( y , x ) K ( y , x ) | ) 1 | x y | ] s d μ ( x ) ) 1 s C s .
(1.7)
We denote by H s the class of kernels satisfying this condition. It is clear that these classes are nested,
H s 2 H s 1 H 1 , 1 < s 1 < s 2 < .
We should point out that H 1 is not condition (1.6).
The purpose of this paper is to get some estimates for the fractional type Marcinkiewicz integral ℳ with kernel K satisfying (1.2) and (1.7) on the Hardy-type space and the RBMO ( μ ) space. To be precise, we establish the boundedness of ℳ in H fin 1 , , 0 ( μ ) for 1 q = 1 α n in Section 2. In Section 3, we prove that ℳ is bounded from the space RBMO ( μ ) to the Morrey space M q p ( μ ) , from the space RBMO ( μ ) to the Lebesgue space L n α ( μ ) for p = n α .
Before stating our results, we need to recall some necessary notation and definitions. For a cube Q R d , we mean a closed cube whose sides are parallel to the coordinate axes. We denote its center and its side length by x Q and ( Q ) , respectively. Let η > 1 , ηQ denote the cube with the same center as Q and ( η Q ) = η ( Q ) . Given two cubes Q R in R d , set
S Q , R = 1 + k = 1 N Q , R μ ( 2 k Q ) [ ( 2 k Q ) ] n ,
where N Q , R is the smallest positive integer k such that ( 2 k Q ) ( R ) . The concept S Q , R was introduced in [15], where some useful properties of S Q , R can be found.
Lemma 1.2 For a function b L loc 1 ( μ ) , 0 < β 1 , conditions (i) and (ii) below are equivalent.
(i)
There exist some constant C 2 and a collection of numbers b Q such that these two properties hold: for any cube Q,
1 μ ( 2 Q ) Q | b ( x ) b ( y ) | d μ ( x ) C 2 ( Q ) β ,
(1.8)
 
and for any cube R such that Q R and ( R ) 2 ( Q ) ,
| b Q b R | C 2 ( Q ) β .
(1.9)
(ii)
For any given p, 1 p , there is a constant C ( p ) 0 such that for every cube Q, then
[ 1 μ ( Q ) Q | b ( x ) m Q ( b ) | p d μ ( x ) ] 1 p C ( p ) ( Q ) β ,
(1.10)
 
where
m Q ( b ) = 1 μ ( Q ) Q b ( y ) d μ ( y ) ,
and also for any cube R such that Q R and ( R ) 2 ( Q ) ,
| m Q ( b ) m R ( b ) | C ( p ) ( Q ) β .
Remark 1.3 Lemma 1.2 is a slight variant of Theorem 2.3 in [16]. To be precise, if we replace all balls in Theorem 2.3 of [16] by cubes, we then obtain Lemma 1.2.
Remark 1.4 For 0 < β 1 , (1.9) is equivalent to
| b Q b R | C S Q , R ( R ) β
(1.11)
for any two cubes Q R with ( R ) 2 ( Q ) (see Remark 2.7 in [16]).
Lemma 1.5 Let 0 < α < n , 1 < p < n α , 1 r = 1 p α n and q n n α . Then the fractional integral operator I α defined by
I α f ( x ) = R d f ( y ) | x y | n α d y
is bounded from L p ( μ ) to L r ( μ ) (see [17]).
Lemma 1.6 Let 0 < α < n , 1 < p < n α , 1 q = 1 p α n . Suppose that K ( x , y ) satisfies (1.2) and (1.3) andis as in (1.4). Then there exists a positive constant C > 0 such that for all bounded functions f with compact support,
M ( f ) L q ( μ ) C f L p ( μ ) .
Proof of Lemma 1.6 By Minkowski’s inequality, we have
M ( f ) ( x ) = ( 0 | | x y | t K ( x , y ) | x y | α f ( y ) d μ ( y ) | 2 d t t 3 ) 1 / 2 R d | K ( x , y ) | | x y | α | f ( y ) | ( | x y | d t t 3 ) 1 2 d μ ( y ) C R d 1 | x y | n α 1 | f ( y ) | 1 | x y | d μ ( y ) C R d | f ( y ) | | x y | n α d μ ( y ) C I α ( | f | ) ( x ) .
By Lemma 1.5 then
M ( f ) L q ( μ ) C f L p ( μ ) .
 □
Throughout this paper, we use the constant C with subscripts to indicate its dependence on the parameters. For a μ-measurable set E, χ E denotes its characteristic function. For any p [ 1 , ] , we denote by p its conjugate index, namely 1 p + 1 p = 1 .

2 Boundedness of ℳ in Hardy spaces

This section is devoted to the behavior of ℳ in Hardy spaces. In order to define the Hardy space H 1 ( μ ) , Tolsa introduced the grand maximal operator M ϕ in [18].
Definition 2.1 Given f L loc 1 ( μ ) , M ϕ f is defined as
M ϕ f ( x ) = sup φ x | R d f φ d μ | ,
where the notation φ x means that φ L 1 ( μ ) C 1 ( R d ) and satisfies
(1)
φ L 1 ( μ ) 1 ,
 
(2)
0 φ ( y ) 1 | x y | n for all y R d ,
 
(3)
| φ ( y ) | 1 | x y | n + 1 for all y R d .
 
Based on Theorem 1.2 in [18], we can define the Hardy space H 1 ( μ ) as follows (see [15]).
Definition 2.2 The Hardy space H 1 ( μ ) is the set of all functions f L 1 ( μ ) satisfying that R d f d μ = 0 and M ϕ f L 1 ( μ ) . Moreover, the norm of f H 1 ( μ ) is defined by
f H 1 ( μ ) = f L 1 ( μ ) + M ϕ f L 1 ( μ ) .
We recall the atomic Hardy space H atb 1 , , 0 ( μ ) as follows.
Definition 2.3 Let ρ > 1 . A function h L loc 1 ( μ ) is called an atomic block if
(1)
there exists some cube R such that supp h R ,
 
(2)
R d h ( x ) d μ ( x ) = 0 ,
 
(3)
for i = 1 , 2 , there are functions a i supported on cubes Q i R and numbers λ i R such that h = λ 1 a 1 + λ 2 a 2 , and
a i L ( μ ) [ μ ( ρ Q i ) S Q i , R ] 1 .
 
Then define
| h | H atb 1 , , 0 ( μ ) = | λ 1 | + | λ 2 | .
Define H atb 1 , , 0 ( μ ) and H fin 1 , , 0 ( μ ) as follows:
f H atb 1 , , 0 ( μ ) = inf { j | h j | H atb 1 , , 0 ( μ ) : f = j = 1 h j , { h j } j N  are  ( 1 , , 0 ) -atoms }
and
f H fin 1 , , 0 ( μ ) = inf { j k | h j | H atb 1 , , 0 ( μ ) : f = j = 1 k h j , { h j } j = 1 k  are  ( 1 , , 0 ) -atoms } ,
where the infimum is taken over all possible decompositions of f in atomic blocks, H fin 1 , , 0 ( μ ) is the set of all finite linear combinations of ( 1 , , 0 ) -atoms.
Remark 2.4 It was proved in [15] that for each ρ > 1 , the atomic Hardy space H atb 1 , , 0 ( μ ) is independent of the choice of ρ.
Applying the theory of Meda et al. in [19], we easily get the result as follows.
Theorem 2.5 Let 0 < α < n , 1 q = 1 α n . Suppose that K satisfies (1.2) and the H q condition and f H fin 1 , , 0 ( μ ) . Thenis bounded from the Hardy space into the Lebesgue space, namely there exists a positive constant C such that
M ( f ) L q ( μ ) C f H fin 1 , , 0 ( μ ) .
Proof of Theorem 2.5 Without loss of generality, we may assume that ρ = 4 and f = h as a finite of atomic blocks defined in Definition 2.3. It is easy to see that we only need to prove the theorem for one atomic block h. Let R be a cube such that supp h R , R d h ( x ) d μ ( x ) = 0 , and
h ( x ) = λ 1 a 1 ( x ) + λ a 2 ( x ) ,
(2.1)
where λ i for i = 1 , 2 is a real number, | h i | H atb 1 , , 0 ( μ ) = λ 1 + λ 2 , a i for i = 1 , 2 is a bounded function supported on some cubes Q i R and it satisfies
a i L ( μ ) [ μ ( 4 Q i ) S Q i , R ] 1 .
(2.2)
Write
M ( h ) L q ( μ ) ( 2 R | M ( h ) ( x ) | q d μ ( x ) ) 1 q + ( R d 2 R | M ( h ) ( x ) | q d μ ( x ) ) 1 q ( 2 R | M ( h ) ( x ) | q d μ ( x ) ) 1 q + { R d 2 R ( 0 | x x R | + 2 ( R ) | | x y | t K ( x , y ) | x y | α h ( y ) d μ ( y ) | 2 d t t 3 ) q 2 d μ ( x ) } 1 q + { R d 2 R ( | x x R | + 2 ( R ) | | x y | t K ( x , y ) | x y | α h ( y ) d μ ( y ) | 2 d t t 3 ) q 2 d μ ( x ) } 1 q = I + II + III .
By (2.1), we have
I = ( 2 R | M ( h ) ( x ) | q d μ ( x ) ) 1 q | λ 1 | ( 2 R | M ( a 1 ) ( x ) | q d μ ( x ) ) 1 q + | λ 2 | ( 2 R | M ( a 2 ) ( x ) | q d μ ( x ) ) 1 q = I 1 + I 2 .
To estimate I 1 , we write
I 1 | λ 1 | ( 2 Q 1 | M ( a 1 ) ( x ) | q d μ ( x ) ) 1 q + | λ 1 | ( 2 R 2 Q 1 | M ( a 1 ) ( x ) | q d μ ( x ) ) 1 q = I 11 + I 12 .
Choose p 1 and q 1 such that 1 < p 1 < n α , 1 < q < q 1 and 1 q 1 = 1 p 1 n α . By the Hölder inequality, the fact that S Q 1 , R 1 and the ( L p 1 ( μ ) , L q 1 ( μ ) ) -boundedness of ℳ (see Lemma 1.6), we have that
I 11 | λ 1 | [ 2 Q 1 | M ( a 1 ) ( x ) | q 1 d μ ( x ) ] 1 q 1 μ ( 2 Q 1 ) 1 q 1 q 1 C | λ 1 | a 1 L p 1 ( μ ) μ ( 2 Q 1 ) 1 q 1 q 1 C | λ 1 | a 1 L ( μ ) μ ( 2 Q 1 ) 1 p 1 + 1 q 1 q 1 C | λ 1 | .
Denote N 2 Q 1 , 2 R simply by N 1 . Invoking the fact that a 1 L ( μ ) [ μ ( 4 Q i ) S Q i , R ] 1 , we thus get
I 12 C | λ 1 | { k = 1 N 1 + 1 2 k + 1 Q 1 2 k Q 1 [ 0 | | x y | t a 1 ( y ) | x y | n α 1 d μ ( y ) | 2 d t t 3 ] q 2 d μ ( x ) } 1 q C | λ 1 | { k = 1 N 1 + 1 ( 2 k Q 1 ) q ( α n ) × 2 k + 1 Q 1 2 k Q 1 [ Q 1 | a 1 ( y ) | | x y | n 1 α ( | x y | d t t 3 ) 1 2 d μ ( y ) ] q d μ ( x ) } 1 q C | λ 1 | { k = 1 N 1 + 1 ( 2 k Q 1 ) q ( α n ) 2 k + 1 Q 1 2 k Q 1 [ Q 1 | a 1 ( y ) | d μ ( y ) ] q d μ ( x ) } 1 q C | λ 1 | { k = 1 N 1 + 1 ( 2 k Q 1 ) q ( α n ) μ ( 2 k + 1 Q 1 ) a 1 L ( μ ) q μ ( Q 1 ) q } 1 q C | λ 1 | { k = 1 N 1 + 1 ( 2 k Q 1 ) q ( α n ) μ ( 4 Q 1 ) q S Q 1 , R q μ ( 2 k + 1 Q 1 ) a 1 L ( μ ) q μ ( Q 1 ) q } 1 q C | λ 1 | ( S Q 1 , R q k = 2 N 1 + 1 μ ( 2 k Q 1 ) ( 2 k Q 1 ) n ) 1 q C | λ 1 | .
Here we have used the fact that
k = 2 N 1 + 1 μ ( 2 k Q ) ( 2 k Q ) n C S Q , R ,
see [16] for details.
The estimates for I 11 and I 12 give the desired estimate for I 1 . With a similar argument, we have
I 2 C | λ 2 | .
Combining the estimates for I 1 and I 2 yields the estimate for I.
For i = 1 , 2 , y Q i R , x R d ( 2 R ) , we have | x y | | x x R | | x x R | + 2 ( R ) , by Minkowski’s inequality, we get
II { R d ( 2 R ) [ R h ( y ) | x y | n 1 α ( | x y | | x x R | + 2 ( R ) d t t 3 ) 1 2 ] q d μ ( x ) } 1 q C R { R d ( 2 R ) [ | 1 ( | x x R | + 2 ( R ) ) 2 1 | x y | 2 | 1 2 | h ( y ) | | x y | n 1 α ] q d μ ( x ) } 1 q d μ ( y ) C R { R d ( 2 R ) ( ( R ) 1 2 | x y | 3 2 | h ( y ) | | x y | n 1 α ) q d μ ( x ) } 1 q d μ ( y ) C R { k = 1 2 k + 1 R ( 2 k R ) ( ( R ) 1 2 | x y | n α + 1 2 ) q d μ ( x ) } 1 q | h ( y ) | d μ ( y ) C ( j = 1 2 | λ j | a j L 1 ( μ ) ) { k = 1 ( R ) 1 2 ( 2 k R ) n + α 1 2 μ ( 2 k + 1 R ) 1 q } C ( j = 1 2 | λ j | ) .
For any y R , we have | x y | | x x R | + | y x R | | x x R | + 2 ( R ) t . It follows that
III { R d 2 R ( | x x R | + 2 ( R ) | | x y | t [ K ( x , y ) | x y | α K ( x , x R ) | x x R | α ] h ( y ) d μ ( y ) | 2 d t t 3 ) q 2 d μ ( x ) } 1 q { R d 2 R [ R | K ( x , y ) | x y | α K ( x , x R ) | x x R | α | ( | x x R | + 2 ( R ) d t t 3 ) 1 2 | h ( y ) | d μ ( y ) ] q d μ ( x ) } 1 q C R k = 1 { 2 k + 1 R 2 k R [ | K ( x , y ) | x y | α K ( x , x R ) | x x R | α | 1 | x y | ] q d μ ( x ) } 1 q | h ( y ) | d μ ( y ) C R k = 1 { 2 k + 1 R 2 k R [ | K ( x , y ) | x y | α K ( x , y ) | x x R | α + K ( x , y ) | x x R | α K ( x , x R ) | x x R | α | 1 | x y | ] q d μ ( x ) } 1 q | h ( y ) | d μ ( y ) C R k = 1 { 2 k + 1 R 2 k R [ | K ( x , y ) | x y | α K ( x , y ) | x x R | α | 1 | x y | ] q d μ ( x ) } 1 q | h ( y ) | d μ ( y ) + C R k = 1 { 2 k + 1 R 2 k R [ | K ( x , y ) | x x R | α K ( x , x R ) | x x R | α | 1 | x y | ] q d μ ( x ) } 1 q | h ( y ) | d μ ( y ) C R k = 1 ( R ) { 2 k + 1 R 2 k R 1 | x y | q ( n α + 1 ) d μ ( x ) } 1 q | h ( y ) | d μ ( y ) + R k = 1 ( 2 k + 1 R 2 k R [ ( 2 k R ) α | K ( x , y ) K ( x , x R ) | | x y | ] q d μ ( x ) ) 1 q | h ( y ) | d μ ( y ) C ( j = 1 2 | λ j | ) .
Here we have used the fact that 1 q = 1 α n .
Combining the estimates for I, II and III yields that
M ( h ) L q ( μ ) C | h | H atb 1 , , 0 ( μ ) ,
and this is the result of Theorem 2.5. □

3 Boundedness of ℳ in RBMO ( μ ) spaces

In this section, we discuss the boundedness for ℳ as in (1.4) in the space RBMO ( μ ) for f M p q ( μ ) and f L n α ( μ ) , respectively.
Firstly, we need to recall the definition of Morrey space with non-doubling measure denoted by M q p ( μ ) , which was introduced by Sawano and Tanaka in [20].
Definition 3.1 Let ν > 1 and 1 q p < . The Morrey space M q p ( μ ) is defined by
M q p ( μ ) = { f L loc q ( μ ) : f M q p ( μ ) < } ,
where the norm f M q p ( μ ) is given by
f M q p ( μ ) = sup Q μ ( ν Q ) 1 p 1 q ( Q | f ( x ) | q d μ ( x ) ) 1 q .
We should note that the parameter ν > 1 appearing in the definition does not affect the definition of the space M q p ( μ ) , and M q p ( μ ) is a Banach space with its norms (see [20]). By using the Hölder inequality to (1.4), it is easy to see that for all 1 q 2 q 1 p , then
L p ( μ ) = M p p ( μ ) M q 1 p ( μ ) M q 2 p ( μ ) .
Theorem 3.2 Let 0 < α < n , 1 q < p = n α . Suppose that K ( x , y ) satisfies (1.2) and the H p condition, ℳ is defined as in (1.4). Then there exists a positive constant C such that for all f M q p ( μ ) ,
M ( f ) RBMO ( μ ) C f M q p ( μ ) .
Theorem 3.3 Let 0 < α < n and p = n α . Suppose that K ( x , y ) satisfies (1.2) and the H n n α condition, ℳ is defined as in (1.4). Then there exists a positive constant C such that for all bounded functions f with compact support,
M ( f ) RBMO ( μ ) C f L n α ( μ ) .
Remark 3.4 As a special condition, we take p = q = n α , Theorem 3.3 can be deduced with a similar method of Theorem 3.2.
Proof of Theorem 3.2 For any cubes Q and R in R d such that Q R satisfies ( R ) 2 ( Q ) , let
a Q = m Q [ M ( f χ R d 3 2 Q ) ]
and
a R = m R [ M ( f χ R d 3 2 R ) ] .
It is easy to see that a Q and a R are real numbers. By Lemma 1.2, we need to show that for some fixed r > q , there exists a constant C > 0 such that
( 1 μ ( 2 Q ) Q | M ( f ) ( x ) a Q | r d μ ( x ) ) 1 r C f M q p ( μ )
(3.1)
and
| a Q a R | C f M q p ( μ ) .
(3.2)
Let us first prove estimate (3.1). For a fixed cube Q and x Q , decompose f = f 1 + f 2 , where f 1 = f χ 3 2 Q and f 2 = f f 1 . Write that
1 μ ( 2 Q ) Q | M ( f ) ( x ) a Q | r d μ ( x ) = 1 μ ( 2 Q ) Q | M ( f 1 + f 2 ) ( x ) a Q | r d μ ( x ) 1 μ ( 2 Q ) Q | M ( f 1 ) ( x ) | r d μ ( x ) + 1 μ ( 2 Q ) Q | M ( f 2 ) ( x ) a Q | r d μ ( x ) = I 1 + I 2 .
For 1 r = 1 q α n and p = α n , it follows that
I 1 = 1 μ ( 2 Q ) Q | M ( f 1 ) ( x ) | r d μ ( x ) C 1 μ ( 2 Q ) ( 3 2 Q | f ( x ) | q d μ ( x ) ) r q C 1 μ ( 2 Q ) ( μ ( 2 Q ) 1 p 1 q 3 2 Q | f ( x ) | q d μ ( x ) ) r q μ ( 2 Q ) r ( 1 q 1 p ) C f M q p ( μ ) r μ ( 2 Q ) r ( 1 q 1 p ) 1 C f M q p ( μ ) r .
Now let us estimate the term I 2 ,
I 2 = 1 μ ( 2 Q ) Q | M ( f 2 ) ( x ) a Q | r d μ ( x ) = 1 μ ( 2 Q ) Q | M ( f 2 ) ( x ) 1 μ ( Q ) Q M ( f χ R d 3 2 Q ) ( y ) d μ ( y ) | r d μ ( x ) = 1 μ ( 2 Q ) Q | 1 μ ( Q ) Q M ( f 2 ) ( x ) d μ ( y ) 1 μ ( Q ) Q M ( f χ R d 3 2 Q ) ( y ) d μ ( y ) | r d μ ( x ) 1 μ ( 2 Q ) 1 μ ( Q ) Q Q | M ( f 2 ) ( x ) M ( f 2 ) ( y ) | r d μ ( x ) d μ ( y ) .
In order to estimate | M ( f 2 ) ( x ) M ( f 2 ) ( y ) | , we write
D 1 ( x , y ) = ( 0 [ | x z | t < | y z | | K ( x , z ) | | x z | α f 2 ( z ) d μ ( z ) ] 2 d t t 3 ) 1 2 , D 2 ( x , y ) = ( 0 [ | y z | t < | x z | | K ( y , z ) | | y z | α f 2 ( z ) d μ ( z ) ] 2 d t t 3 ) 1 2
and
D 3 ( x , y ) = ( 0 [ | x z | t | y z | t | K ( x , z ) | x z | α K ( y , z ) | y z | α | | f 2 ( z ) | d μ ( z ) ] 2 d t t 3 ) 1 2 .
It is easy to get that for any x , y Q ,
| M ( f 2 ) ( x ) M ( f 2 ) ( y ) | = | ( 0 | | x z | t K ( x , z ) | x z | α d μ ( z ) | 2 d t t 3 ) 1 2 ( 0 | | y z | t K ( y , z ) | y z | α d μ ( z ) | 2 d t t 3 ) 1 2 | ( 0 | | x z | t K ( x , z ) | x z | α f 2 ( z ) d μ ( z ) | y z | t K ( y , z ) | y z | α f 2 ( z ) d μ ( z ) | 2 d t t 3 ) 1 2 ( 0 | | x z | t < | y z | K ( x , z ) | x z | α f 2 ( z ) d μ ( z ) + | y z | t K ( x , z ) | x z | α f 2 ( z ) d μ ( z ) | y z | t < | x z | K ( y , z ) | y z | α f 2 ( z ) d μ ( z ) | x z | t K ( y , z ) | y z | α f 2 ( z ) d μ ( z ) | 2 d t t 3 ) 1 2 ( 0 | | x z | t < | y z | K ( x , z ) | x z | α f 2 ( z ) d μ ( z ) | 2 d t t 3 ) 1 2 + ( 0 | | y z | t < | x z | K ( y , z ) | y z | α f 2 ( z ) d μ ( z ) | 2 d t t 3 ) 1 2 + { 0 [ | x z | t | y z | t ( K ( x , z ) | x z | α K ( y , z ) | y z | α ) f 2 ( z ) d μ ( z ) ] 2 d t t 3 } 1 2 j = 1 3 D j ( x , y ) .
For D 1 ( x , y ) , since x , y Q , z 3 2 Q , thus we get
D 1 ( x , y ) C ( 0 [ | x z | t < | y z | | f 2 ( z ) | | x z | n α 1 d μ ( z ) ] 2 d t t 3 ) 1 2 C | x z | < | y z | | f 2 ( z ) | | x z | n α 1 ( | x z | | y z | d t t 3 ) 1 2 d μ ( z ) C ( Q ) 1 2 | x z | < | y z | | f 2 ( z ) | | x z | n α + 1 2 d μ ( z ) C ( Q ) 1 2 R d 3 2 Q | f 2 ( z ) | | x z | n α + 1 2 d μ ( z ) C ( Q ) 1 2 k = 1 2 k + 1 Q 2 k Q | f 2 ( z ) | | x z | n α + 1 2 d μ ( z ) C ( Q ) 1 2 k = 1 1 ( 3 2 2 k Q ) n α + 1 2 2 k + 1 Q | f 2 ( z ) | d μ ( z ) C k = 1 2 k 2 1 ( 3 2 2 k Q ) n α ( 2 k + 1 Q | f 2 ( z ) | q d μ ( z ) ) 1 q μ ( 3 2 2 k Q ) 1 1 q C f M q p ( μ ) k = 1 2 k 2 C f M q p ( μ ) .
By a similar argument, it follows that
D 2 ( x , y ) C f M q p ( μ ) .
Finally, by the condition H P , which the kernel K ( x , y ) conditions, applying Minkowski’s inequality, and the fact that α = n p , we have
D 3 ( x , y ) = ( 0 [ | x z | t | y z | t | K ( x , z ) | x z | α K ( y , z ) | y z | α | | f 2 ( z ) | d μ ( z ) ] 2 d t t 3 ) 1 2 C R d 3 2 Q | K ( x , z ) | x z | α K ( y , z ) | y z | α | | f ( z ) | ( | x z | t | y z | t d t t 3 ) 1 2 d μ ( z ) C k = 1 3 2 2 k + 1 Q 3 2 2 k Q | K ( x , z ) | x z | α K ( y , z ) | y z | α | | f ( z ) | | y z | d μ ( z ) C f M q p ( μ ) k = 1 μ ( 2 k Q ) 1 q 1 p × { 3 2 2 k + 1 Q 3 2 2 k Q [ 1 | y z | | K ( x , z ) | x z | α K ( y , z ) | y z | α | ] q d μ ( z ) } 1 q C f M q p ( μ ) k = 1 ( 3 2 2 k Q ) n q n p × { 3 2 2 k + 1 Q 3 2 2 k Q [ 1 | y z | | K ( x , z ) | x z | α K ( x , z ) | y z | α + K ( x , z ) | y z | α K ( y , z ) | y z | α | ] q d μ ( z ) } 1 q C f M q p ( μ ) k = 1 ( 3 2 2 k Q ) α n p ( 3 2 2 k Q ) n × { 1 ( 3 2 2 k Q ) n 3 2 2 k + 1 Q 3 2 2 k Q [ | K ( x , z ) K ( y , z ) | 1 | y z | ] q d μ ( z ) } 1 q + C f M q p ( μ ) k = 1 ( 3 2 2 k Q ) n q n p ( Q ) α ( 3 2 2 k + 1 Q 3 2 2 k Q 1 | y z | n q d μ ( z ) ) 1 q C f M q p ( μ ) .
Combining these estimates, we conclude that
I 2 C f M q p ( μ ) ,
and so estimate (3.1) is proved.
We proceed to show (3.2). For any cubes Q R with x Q , denote N Q , R + 1 simply by N. Write
| a Q a R | | m R [ M ( f χ R d 2 N Q ) ] m Q [ M ( f χ R d 2 N R ) ] | + | m Q [ M ( f χ 2 N Q 3 2 Q ) ] | + | m R [ M ( f χ 2 N Q 3 2 R ) ] | = E 1 + E 2 + E 3 .
As in the estimate for the term I 2 , then
E 2 C f M q p ( μ ) .
We conclude from y R , z 2 N Q 3 2 Q that
M ( f χ 2 N Q 3 2 R ) ( y ) C 2 N Q 3 2 R | K ( y , z ) | y z | α | ( | y z | d t t 3 ) 1 2 d μ ( z ) C 2 N Q 3 2 R | f ( z ) | | y z | n α d μ ( z ) C ( R ) α n 2 N Q 3 2 R | f ( z ) | d μ ( z ) C ( R ) α n ( 2 N Q 3 2 R | f ( z ) | q d μ ( z ) ) 1 q μ ( 2 N Q ) 1 1 q C ( R ) α n μ ( 2 N Q ) 1 p 1 q ( 2 N Q | f ( z ) | q d μ ( z ) ) 1 q μ ( 2 N Q ) 1 1 p C f M q p ( μ ) ( 2 N Q ) α n p C f M q p ( μ ) .
Taking mean over y R , we obtain
E 3 C f M q p ( μ ) .
Analysis similar to that in the estimates for E 3 shows that
E 2 C f M q p ( μ ) .
Finally, we get (3.2) and this is precisely the assertion of Theorem 3.2. □

Acknowledgements

Jiang Zhou is supported by the National Science Foundation of China (Grant No. 11261055) and the National Natural Science Foundation of Xinjiang (Grant Nos. 2011211A005, BS120104).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Deng D, Han Y, Yang D: Besov spaces with non-doubling measures. Trans. Am. Math. Soc. 2006,358(7):2965–3001. 10.1090/S0002-9947-05-03787-6MathSciNetCrossRef Deng D, Han Y, Yang D: Besov spaces with non-doubling measures. Trans. Am. Math. Soc. 2006,358(7):2965–3001. 10.1090/S0002-9947-05-03787-6MathSciNetCrossRef
2.
Zurück zum Zitat Han Y, Yang D: Triebel-Lizorkin spaces with non-doubling measures. Stud. Math. 2004,162(2):105–140. 10.4064/sm162-2-2MathSciNetCrossRef Han Y, Yang D: Triebel-Lizorkin spaces with non-doubling measures. Stud. Math. 2004,162(2):105–140. 10.4064/sm162-2-2MathSciNetCrossRef
3.
Zurück zum Zitat Hu G, Meng Y, Yang D:New atomic characterization of H 1 space with non-doubling measures and its applications. Math. Proc. Camb. Philos. Soc. 2005,138(1):151–171. 10.1017/S030500410400800XMathSciNetCrossRef Hu G, Meng Y, Yang D:New atomic characterization of H 1 space with non-doubling measures and its applications. Math. Proc. Camb. Philos. Soc. 2005,138(1):151–171. 10.1017/S030500410400800XMathSciNetCrossRef
4.
Zurück zum Zitat Nazarov F, Treil S, Volberg A: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on non-homogeneous spaces. Int. Math. Res. Not. 1998, 9: 463–487.MathSciNetCrossRef Nazarov F, Treil S, Volberg A: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on non-homogeneous spaces. Int. Math. Res. Not. 1998, 9: 463–487.MathSciNetCrossRef
5.
Zurück zum Zitat Nazarov F, Treil S, Volberg A: Accretive system Tb-theorems on non-homogeneous spaces. Duke Math. J. 2002,113(2):259–312. 10.1215/S0012-7094-02-11323-4MathSciNetCrossRef Nazarov F, Treil S, Volberg A: Accretive system Tb-theorems on non-homogeneous spaces. Duke Math. J. 2002,113(2):259–312. 10.1215/S0012-7094-02-11323-4MathSciNetCrossRef
6.
Zurück zum Zitat Nazarov F, Treil S, Volberg A: The Tb-theorems on non-homogeneous spaces. Acta Math. 2003,190(2):151–239. 10.1007/BF02392690MathSciNetCrossRef Nazarov F, Treil S, Volberg A: The Tb-theorems on non-homogeneous spaces. Acta Math. 2003,190(2):151–239. 10.1007/BF02392690MathSciNetCrossRef
7.
Zurück zum Zitat Tolsa X:Littlewood-Paley theory and the T ( 1 ) theorem with non-doubling measures. Adv. Math. 2001,164(1):57–116. 10.1006/aima.2001.2011MathSciNetCrossRef Tolsa X:Littlewood-Paley theory and the T ( 1 ) theorem with non-doubling measures. Adv. Math. 2001,164(1):57–116. 10.1006/aima.2001.2011MathSciNetCrossRef
8.
Zurück zum Zitat Yang D, Yang D: Uniform boundedness for approximations of the identity with non-doubling measures. J. Inequal. Appl. 2007., 2007: Article ID 19574 Yang D, Yang D: Uniform boundedness for approximations of the identity with non-doubling measures. J. Inequal. Appl. 2007., 2007: Article ID 19574
9.
10.
Zurück zum Zitat Tolsa X: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 2003,190(1):105–149. 10.1007/BF02393237MathSciNetCrossRef Tolsa X: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 2003,190(1):105–149. 10.1007/BF02393237MathSciNetCrossRef
11.
Zurück zum Zitat Si Z, Wang L, Jiang Y: Fractional type Marcinkiewicz integral on Hardy spaces. J. Math. Res. Expo. 2011,31(2):233–241.MathSciNet Si Z, Wang L, Jiang Y: Fractional type Marcinkiewicz integral on Hardy spaces. J. Math. Res. Expo. 2011,31(2):233–241.MathSciNet
12.
Zurück zum Zitat Stein E: On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 1958, 88: 430–466. 10.1090/S0002-9947-1958-0112932-2CrossRef Stein E: On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 1958, 88: 430–466. 10.1090/S0002-9947-1958-0112932-2CrossRef
14.
Zurück zum Zitat Hu G, Lin H, Yang D: Marcinkiewicz integrals with non-doubling measures. Integral Equ. Oper. Theory 2007, 58: 205–238. 10.1007/s00020-007-1481-5MathSciNetCrossRef Hu G, Lin H, Yang D: Marcinkiewicz integrals with non-doubling measures. Integral Equ. Oper. Theory 2007, 58: 205–238. 10.1007/s00020-007-1481-5MathSciNetCrossRef
15.
Zurück zum Zitat Tolsa X: BMO , H 1 and Calderón-Zygmund operators for non-doubling measures. Math. Ann. 2001, 319: 89–149. 10.1007/PL00004432MathSciNetCrossRef Tolsa X: BMO , H 1 and Calderón-Zygmund operators for non-doubling measures. Math. Ann. 2001, 319: 89–149. 10.1007/PL00004432MathSciNetCrossRef
16.
Zurück zum Zitat García-Cuerva J, Gatto A: Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures. Publ. Mat. 2005, 49: 258–296.CrossRef García-Cuerva J, Gatto A: Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures. Publ. Mat. 2005, 49: 258–296.CrossRef
17.
Zurück zum Zitat Ding Y, Yang D: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 1998,50(1):29–39. 10.4153/CJM-1998-003-1MathSciNetCrossRef Ding Y, Yang D: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 1998,50(1):29–39. 10.4153/CJM-1998-003-1MathSciNetCrossRef
18.
Zurück zum Zitat Tolsa X:The space H 1 for non-doubling measure in terms of a grand maximal operator. Trans. Am. Math. Soc. 2003, 355: 315–348. 10.1090/S0002-9947-02-03131-8MathSciNetCrossRef Tolsa X:The space H 1 for non-doubling measure in terms of a grand maximal operator. Trans. Am. Math. Soc. 2003, 355: 315–348. 10.1090/S0002-9947-02-03131-8MathSciNetCrossRef
19.
Zurück zum Zitat Meda S, Sjögren P, Vallarino M:On the H 1 - L 1 boundedness of operators. Proc. Am. Math. Soc. 2008, 136: 2921–2931. 10.1090/S0002-9939-08-09365-9CrossRef Meda S, Sjögren P, Vallarino M:On the H 1 - L 1 boundedness of operators. Proc. Am. Math. Soc. 2008, 136: 2921–2931. 10.1090/S0002-9939-08-09365-9CrossRef
20.
Zurück zum Zitat Sawano Y, Tanaka H: Morrey space for non-doubling measures. Acta Math. Sin. 2005,21(6):1535–1544. 10.1007/s10114-005-0660-zMathSciNetCrossRef Sawano Y, Tanaka H: Morrey space for non-doubling measures. Acta Math. Sin. 2005,21(6):1535–1544. 10.1007/s10114-005-0660-zMathSciNetCrossRef
Metadaten
Titel
Estimates for fractional type Marcinkiewicz integrals with non-doubling measures
verfasst von
Guanghui Lu
Jiang Zhou
Publikationsdatum
01.12.2014
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2014
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2014-285

Weitere Artikel der Ausgabe 1/2014

Journal of Inequalities and Applications 1/2014 Zur Ausgabe

Premium Partner