Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2013

Open Access 01.12.2013 | Research

On the harmonic number expansion by Ramanujan

verfasst von: Cristinel Mortici, Chao-Ping Chen

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2013

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Let γ = 0.577215664 denote the Euler-Mascheroni constant, and let the sequences
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equa_HTML.gif
The main aim of this paper is to find the values r, s, t, a, b, c and d which provide the fastest sequences ( u n ) n 1 and ( v n ) n 1 approximating the Euler-Mascheroni constant. Also, we give the upper and lower bounds for k = 1 n 1 k 1 2 ln ( n 2 + n + 1 3 ) γ in terms of n 2 + n + 1 3 .
MSC: 11Y60, 40A05, 33B15.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CM proposed the sequence u n . CPC proposed the sequence v n . CM proposed to solve the problems using Lemma 1, while CPC used Lemma 2 in evaluations. Both authors made the computations and verified their corectedness. The authors read and approved the final manuscript.

1 Introduction

The Euler-Mascheroni constant γ = 0.577215664 is defined as the limit of the sequence
D n = H n ln n ,
(1.1)
where H n denotes the n th harmonic number defined for n N : = { 1 , 2 , 3 , } by
H n = k = 1 n 1 k .
Several bounds for D n γ have been given in the literature [17]. For example, the following bounds for D n γ were established in [3, 7]:
1 2 ( n + 1 ) < D n γ < 1 2 n ( n N ) .
The convergence of the sequence D n to γ is very slow. Some quicker approximations to the Euler-Mascheroni constant were established in [821]. For example, Cesàro [8] proved that for every positive integer n 1 , there exists a number c n ( 0 , 1 ) such that the following approximation is valid:
k = 1 n 1 k 1 2 ln ( n 2 + n ) γ = c n 6 n ( n + 1 ) .
Entry 9 of Chapter 38 of Berndt’s edition of Ramanujan’s Notebooks [[22], p.521] reads,
‘Let m : = n ( n + 1 ) 2 , where n is a positive integer. Then, as n approaches infinity,
k = 1 1 k 1 2 ln ( 2 m ) + γ + 1 12 m 1 120 m 2 + 1 630 m 3 1 1 , 680 m 4 + 1 2 , 310 m 5 191 360 , 360 m 6 + 1 30 , 030 m 7 2 , 833 1 , 166 , 880 m 8 + 140 , 051 17 , 459 , 442 m 9 [ ] .
For the history and the development of Ramanujan’s formula, see [20].
Recently, by changing the logarithmic term in (1.1), DeTemple [15], Negoi [18] and Chen et al. [14] have presented, respectively, faster and faster asymptotic formulas as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equ2_HTML.gif
(1.2)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equ3_HTML.gif
(1.3)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equ4_HTML.gif
(1.4)
Chen and Mortici [13] provided a faster asymptotic formula than those in (1.2) to (1.4),
k = 1 n 1 k ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5 , 760 n 3 ) = γ + O ( n 5 ) ( n ) ,
(1.5)
and posed the following natural question.
Open problem For a given positive integer p, find the constants a j ( j = 0 , 1 , 2 , , p ) such that
k = 1 n 1 k ln ( n + j = 0 p a j n j )
(1.6)
is the sequence which would converge to γ in the fastest way.
Very recently, Yang [21] published the solution of the open problem (1.6) by using logarithmic-type Bell polynomials.
For all n N , let
P n = k = 1 n 1 k 1 2 ln ( n 2 + n + 1 3 )
(1.7)
and
Q n = k = 1 n 1 k 1 4 ln [ ( n 2 + n + 1 3 ) 2 1 45 ] .
Chen and Li [12] proved that for all integers n 1 ,
1 180 ( n + 1 ) 4 < γ P n < 1 180 n 4
(1.8)
and
8 2 , 835 ( n + 1 ) 6 < Q n γ < 8 2 , 835 n 6 .
Now we define the sequences
u n = k = 1 n 1 k 1 2 ln ( n 2 + n + 1 3 ) 1 r ( n 2 + n + 1 3 ) + s ( n 2 + n + 1 3 ) 2 + t
(1.9)
and
v n = k = 1 n 1 k 1 2 ln ( n 2 + n + 1 3 ) ( a ( n 2 + n + 1 3 ) 2 + b ( n 2 + n + 1 3 ) 3 + c ( n 2 + n + 1 3 ) 4 + d ( n 2 + n + 1 3 ) 5 ) ,
(1.10)
respectively. Our Theorems 1 and 2 are to find the values r, s, t, a, b, c and d which provide the fastest sequences ( u n ) n 1 and ( v n ) n 1 approximating the Euler-Mascheroni constant.
Theorem 1 Let ( u n ) n 1 be defined by (1.9). For
r = 640 7 , s = 180 , t = 26 , 770 441 ,
we have
lim n n 11 ( u n u n + 1 ) = 457 , 528 123 , 773 , 265
(1.11)
and
lim n n 10 ( u n γ ) = 457 , 528 123 , 773 , 265 .
(1.12)
The speed of convergence of the sequence ( u n ) n 1 is n 10 .
Theorem 2 Let ( v n ) n 1 be defined by (1.10). For
a = 1 180 , b = 8 2 , 835 , c = 5 1 , 512 , d = 592 93 , 555 ,
we have
lim n n 13 ( v n v n + 1 ) = 796 , 801 3 , 648 , 645 and lim n n 12 ( v n γ ) = 796 , 801 43 , 783 , 740 .
The speed of convergence of the sequence ( v n ) n 1 is n 12 .
Our Theorems 3 and 4 establish the bounds for γ P n in terms of n 2 + n + 1 3 .
Theorem 3 Let P n be defined by (1.7). Then
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equ13_HTML.gif
(1.13)
Theorem 4 Let P n be defined by (1.7). Then
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equ14_HTML.gif
(1.14)
Remark 1 The inequality (1.14) is sharper than (1.8), while the inequality (1.13) is sharper than (1.14).

2 Lemmas

Before we prove the main theorems, let us give some preliminary results.
The constant γ is deeply related to the gamma function Γ ( z ) thanks to the Weierstrass formula:
Γ ( z ) = e γ z z k = 1 { ( 1 + z k ) 1 e z / k } ( z C Z 0 ; Z 0 : = { 1 , 2 , 3 , } ) .
The logarithmic derivative of the gamma function
ψ ( z ) = Γ ( z ) Γ ( z ) or ln Γ ( z ) = 1 z ψ ( t ) d t
is known as the psi (or digamma) function. The successive derivatives of the psi function ψ ( z )
ψ ( n ) ( z ) : = d n d z n { ψ ( z ) } ( n N )
are called the polygamma functions.
The following recurrence and asymptotic formulas are well known for the psi function:
ψ ( z + 1 ) = ψ ( z ) + 1 z
(2.1)
(see [[23], p.258]), and
ψ ( z ) ln z 1 2 z 1 12 z 2 + 1 120 z 4 1 252 z 6 + ( z  in  | arg z | < π )
(2.2)
(see [[23], p.259]). From (2.1) and (2.2), we get
ψ ( n + 1 ) ln n + 1 2 n 1 12 n 2 + 1 120 n 4 1 252 n 6 + ( n ) .
(2.3)
It is also known [[23], p.258] that
ψ ( n + 1 ) = γ + k = 1 n 1 k .
Lemma 1 [24, 25]
If ( λ n ) n 1 is convergent to zero and there exists the limit
lim n n k ( λ n λ n + 1 ) = l R ,
with k > 1 , then there exists the limit
lim n n k 1 λ n = l k 1 .
Lemma 1 gives a method for measuring the speed of convergence.
Lemma 2 [[26], Theorem 9]
Let k 1 and n 0 be integers. Then, for all real numbers x > 0 ,
S k ( 2 n ; x ) < ( 1 ) k + 1 ψ ( k ) ( x ) < S k ( 2 n + 1 ; x ) ,
(2.4)
where
S k ( p ; x ) = ( k 1 ) ! x k + k ! 2 x k + 1 + i = 1 p [ B 2 i j = 1 k 1 ( 2 i + j ) ] 1 x 2 i + k ,
and B i ( i = 0 , 1 , 2 , ) are Bernoulli numbers defined by
t e t 1 = i = 0 B i t i i ! .
It follows from (2.4) that for x > 0 ,
1 x + 1 2 x 2 + 1 6 x 3 1 30 x 5 + 1 42 x 7 1 30 x 9 + 5 66 x 11 691 2 , 730 x 13 < ψ ( x ) < 1 x + 1 2 x 2 + 1 6 x 3 1 30 x 5 + 1 42 x 7 1 30 x 9 + 5 66 x 11 691 2 , 730 x 13 + 7 6 x 15 ,
from which we imply that for x > 0 ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equ19_HTML.gif
(2.5)

3 Proofs of Theorems 1-4

Proof of Theorem 1 By using the Maple software, we write the difference u n u n + 1 as a power series in n 1 :
u n u n + 1 = ( s + 180 45 s ) 1 n 5 + ( s + 180 9 s ) 1 n 6 + ( 2 ( 6 , 048 s + 567 r 32 s 2 ) 189 s 2 ) 1 n 7 + ( 2 ( 567 r + 2 , 268 s + 11 s 2 ) 27 s 2 ) 1 n 8 + ( 2 ( 23 s 3 + 2 , 430 s r 5 , 310 s 2 + 108 s t 108 r 2 ) 27 s 3 ) 1 n 9 + ( 2 ( 13 , 770 s r + 19 , 170 s 2 1 , 620 s t + 1 , 620 r 2 + 73 s 3 ) 45 s 3 ) 1 n 10 + 1 2 , 673 s 4 ( 15 , 443 s 4 + 4 , 834 , 566 s 2 r 4 , 650 , 624 s 3 + 1 , 033 , 560 s 2 t 1 , 033 , 560 s r 2 53 , 460 s r t + 26 , 730 r 3 ) 1 n 11 + O ( 1 n 12 ) .
(3.1)
According to Lemma 1, we have three parameters r, s and t which produce the fastest convergence of the sequence from (3.1)
{ s + 180 = 0 , 6 , 048 s + 567 r 32 s 2 = 0 , 23 s 3 + 2 , 430 s r 5 , 310 s 2 + 108 s t 108 r 2 = 0 ,
namely if
r = 640 7 , s = 180 , t = 26 , 770 441 .
Thus, we have
u n u n + 1 = 457 , 528 123 , 773 , 265 n 11 + O ( 1 n 12 ) .
By using Lemma 1, we obtain the assertion of Theorem 1. □
Proof of Theorem 2 By using the Maple software, we write the difference v n v n + 1 as a power series in n 1 :
v n v n + 1 = ( 1 45 4 a ) 1 n 5 + ( 1 9 + 20 a ) 1 n 6 + ( 64 a 6 b 64 189 ) 1 n 7 + ( 22 27 + 168 a + 42 b ) 1 n 8 + ( 1 , 180 3 a 8 c 46 27 180 b ) 1 n 9 + ( 72 c + 146 45 + 852 a + 612 b ) 1 n 10 + ( 1 , 160 3 c 15 , 443 2 , 673 5 , 426 3 b 10 d 46 , 976 27 a ) 1 n 11 + ( 2 , 375 243 + 14 , 542 3 b + 4 , 840 3 c + 91 , 432 27 a + 110 d ) 1 n 12 + O ( 1 n 13 ) .
(3.2)
According to Lemma 1, we have four parameters a, b, c and d which produce the fastest convergence of the sequence from (3.2)
{ 1 45 4 a = 0 , 64 a 6 b 64 189 = 0 , 1 , 180 3 a 8 c 46 27 180 b = 0 , 1 , 160 3 c 15 , 443 2 , 673 5 , 426 3 b 10 d 46 , 976 27 a = 0 ,
namely if
a = 1 180 , b = 8 2 , 835 , c = 5 1 , 512 , d = 592 93 , 555 .
Thus, we have
v n v n + 1 = 796 , 801 3 , 648 , 645 n 13 + O ( 1 n 14 ) .
By using Lemma 1, we obtain the assertion of Theorem 2. □
Proof of Theorem 3 Here we only prove the second inequality in (1.13). The proof of the first inequality in (1.13) is similar. The upper bound of (1.13) is obtained by considering the function F for x 1 defined by
F ( x ) = 1 2 ln ( x 2 + x + 1 3 ) ψ ( x + 1 ) 1 640 7 ( n 2 + n + 1 3 ) + 180 ( n 2 + n + 1 3 ) 2 26 , 770 441 .
Differentiation and applying the right-hand inequality of (2.5) yield
F ( x ) = ψ ( x + 1 ) + 2 x + 1 2 ( x 2 + x + 1 3 ) + 55 , 566 ( 126 x 3 + 189 x 2 + 137 x + 37 ) 5 ( 7 , 938 x 4 + 15 , 876 x 3 + 17 , 262 x 2 + 9 , 324 x 451 ) 2 > ( 1 x 1 2 x 2 + 1 6 x 3 1 30 x 5 + 1 42 x 7 1 30 x 9 + 5 66 x 11 691 2 , 730 x 13 + 7 6 x 15 ) + 2 x + 1 2 ( x 2 + x + 1 3 ) + 55 , 566 ( 126 x 3 + 189 x 2 + 137 x + 37 ) 5 ( 7 , 938 x 4 + 15 , 876 x 3 + 17 , 262 x 2 + 9 , 324 x 451 ) 2 = P ( x ) 30 , 030 x 13 ( 3 x 2 + 3 x + 1 ) 6 ,
where
P ( x ) = 35 , 471 , 898 , 974 , 548 , 627 , 145 + 138 , 773 , 138 , 144 , 376 , 345 , 519 ( x 4 ) + 241 , 909 , 257 , 272 , 859 , 643 , 240 ( x 4 ) 2 + 253 , 899 , 751 , 881 , 744 , 791 , 655 ( x 4 ) 3 + 181 , 059 , 030 , 163 , 487 , 870 , 836 ( x 4 ) 4 + 93 , 303 , 260 , 620 , 236 , 720 , 571 ( x 4 ) 5 + 35 , 932 , 291 , 146 , 874 , 735 , 228 ( x 4 ) 6 + 10 , 519 , 794 , 292 , 714 , 982 , 599 ( x 4 ) 7 + 2 , 353 , 926 , 972 , 956 , 528 , 576 ( x 4 ) 8 + 400 , 626 , 844 , 002 , 342 , 775 ( x 4 ) 9 + 51 , 041 , 813 , 866 , 867 , 916 ( x 4 ) 10 + 4 , 719 , 218 , 347 , 433 , 667 ( x 4 ) 11 + 299 , 247 , 577 , 164 , 158 ( x 4 ) 12 + 11 , 646 , 155 , 626 , 560 ( x 4 ) 13 + 209 , 840 , 641 , 920 ( x 4 ) 14 > 0 for  x 4 .
Therefore, F ( x ) > 0 for x 4 .
For x = 1 , 2 , 3 , 4 , we compute directly:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equac_HTML.gif
Hence, the sequence ( F ( n ) ) n 1 is strictly increasing. This leads to
F ( n ) < lim n F ( n ) = 0
by using the asymptotic formula (2.3). This completes the proof of the second inequality in (1.13). □
Proof of Theorem 4 Here we only prove the first inequality in (1.14). The proof of the second inequality in (1.14) is similar. The lower bound of (1.14) is obtained by considering the function G for x 1 defined by
G ( x ) = ψ ( x + 1 ) 1 2 ln ( x 2 + x + 1 3 ) + ( 1 180 ( x 2 + x + 1 3 ) 2 + 8 2 , 835 ( x 2 + x + 1 3 ) 3 + 5 1 , 512 ( x 2 + x + 1 3 ) 4 + 592 93 , 555 ( x 2 + x + 1 3 ) 5 ) .
Differentiation and applying the left-hand inequality of (2.5) yield
G ( x ) = ψ ( x + 1 ) 2 x + 1 2 ( x 2 + x + 1 3 ) 3 ( 4 , 158 x 7 + 14 , 553 x 6 + 19 , 701 x 5 + 12 , 870 x 4 + 8 , 283 x 3 + 6 , 831 x 2 8 , 276 x 5 , 194 ) 770 ( 3 x 2 + 3 x + 1 ) 6 > ( 1 x 1 2 x 2 + 1 6 x 3 1 30 x 5 + 1 42 x 7 1 30 x 9 + 5 66 x 11 691 2 , 730 x 13 ) 2 x + 1 2 ( x 2 + x + 1 3 ) 3 ( 41 , 58 x 7 + 14 , 553 x 6 + 19 , 701 x 5 + 12 , 870 x 4 + 8 , 283 x 3 + 6 , 831 x 2 8 , 276 x 5 , 194 ) 770 ( 3 x 2 + 3 x + 1 ) 6 = Q ( x ) 30 , 030 x 13 ( 3 x 2 + 3 x + 1 ) 6 ,
where
Q ( x ) = 274 , 317 , 996 , 839 , 484 + 1 , 074 , 684 , 262 , 984 , 527 ( x 5 ) + 1 , 571 , 352 , 927 , 565 , 772 ( x 5 ) 2 + 1 , 266 , 557 , 271 , 610 , 345 ( x 5 ) 3 + 652 , 427 , 951 , 634 , 329 ( x 5 ) 4 + 230 , 639 , 944 , 842 , 034 ( x 5 ) 5 + 57 , 987 , 546 , 990 , 473 ( x 5 ) 6 + 10 , 515 , 845 , 175 , 406 ( x 5 ) 7 + 1 , 371 , 027 , 303 , 124 ( x 5 ) 8 + 125 , 702 , 024 , 549 ( x 5 ) 9 + 7 , 709 , 579 , 845 ( x 5 ) 10 + 284 , 457 , 957 ( x 5 ) 11 + 4 , 780 , 806 ( x 5 ) 12 > 0 for  x 5 .
Therefore, G ( x ) > 0 for x 5 .
For x = 1 , 2 , 3 , 4 , 5 , we compute directly:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-222/MediaObjects/13660_2012_Article_679_Equah_HTML.gif
Hence, the sequence ( G ( n ) ) n 1 is strictly increasing. This leads to
G ( n ) < lim n G ( n ) = 0
by using the asymptotic formula (2.3). This completes the proof of the first inequality in (1.14). □
Remark 2 Some calculations in this work were performed by using the Maple software for symbolic calculations.
Remark 3 The work of the first author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CM proposed the sequence u n . CPC proposed the sequence v n . CM proposed to solve the problems using Lemma 1, while CPC used Lemma 2 in evaluations. Both authors made the computations and verified their corectedness. The authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Alzer H: Inequalities for the gamma and polygamma functions. Abh. Math. Semin. Univ. Hamb. 1998, 68: 363–372. 10.1007/BF02942573MathSciNetCrossRef Alzer H: Inequalities for the gamma and polygamma functions. Abh. Math. Semin. Univ. Hamb. 1998, 68: 363–372. 10.1007/BF02942573MathSciNetCrossRef
2.
Zurück zum Zitat Anderson GD, Barnard RW, Richards KC, Vamanamurthy MK, Vuorinen M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 1995, 347: 1713–1723. 10.1090/S0002-9947-1995-1264800-3MathSciNetCrossRef Anderson GD, Barnard RW, Richards KC, Vamanamurthy MK, Vuorinen M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 1995, 347: 1713–1723. 10.1090/S0002-9947-1995-1264800-3MathSciNetCrossRef
4.
Zurück zum Zitat Tims SR, Tyrrell JA: Approximate evaluation of Euler’s constant. Math. Gaz. 1971, 55: 65–67. 10.2307/3613323MathSciNetCrossRef Tims SR, Tyrrell JA: Approximate evaluation of Euler’s constant. Math. Gaz. 1971, 55: 65–67. 10.2307/3613323MathSciNetCrossRef
5.
Zurück zum Zitat Tóth L: Problem E3432. Am. Math. Mon. 1991., 98: Article ID 264 Tóth L: Problem E3432. Am. Math. Mon. 1991., 98: Article ID 264
6.
Zurück zum Zitat Tóth L: Problem E3432 (solution). Am. Math. Mon. 1992, 99: 684–685.CrossRef Tóth L: Problem E3432 (solution). Am. Math. Mon. 1992, 99: 684–685.CrossRef
7.
Zurück zum Zitat Young RM: Euler’s constant. Math. Gaz. 1991, 75: 187–190. 10.2307/3620251CrossRef Young RM: Euler’s constant. Math. Gaz. 1991, 75: 187–190. 10.2307/3620251CrossRef
8.
Zurück zum Zitat Cesàro E: Sur la serie harmonique. Nouvelles Ann. Math. 1885, 4: 295–296. Cesàro E: Sur la serie harmonique. Nouvelles Ann. Math. 1885, 4: 295–296.
9.
Zurück zum Zitat Chen C-P: The best bounds in Vernescu’s inequalities for the Euler’s constant. RGMIA Res. Rep. Coll. 2009., 12: Article ID 11. Available online at http://ajmaa.org/RGMIA/v12n3.php Chen C-P: The best bounds in Vernescu’s inequalities for the Euler’s constant. RGMIA Res. Rep. Coll. 2009., 12: Article ID 11. Available online at http://​ajmaa.​org/​RGMIA/​v12n3.​php
10.
Zurück zum Zitat Chen C-P: Inequalities and monotonicity properties for some special functions. J. Math. Inequal. 2009, 3: 79–91.MathSciNetCrossRef Chen C-P: Inequalities and monotonicity properties for some special functions. J. Math. Inequal. 2009, 3: 79–91.MathSciNetCrossRef
11.
Zurück zum Zitat Chen C-P: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 2010, 23: 161–164. 10.1016/j.aml.2009.09.005MathSciNetCrossRef Chen C-P: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 2010, 23: 161–164. 10.1016/j.aml.2009.09.005MathSciNetCrossRef
12.
Zurück zum Zitat Chen C-P, Li L: Two accelerated approximations to the Euler-Mascheroni constant. Sci. Magna 2010, 6: 102–110. Chen C-P, Li L: Two accelerated approximations to the Euler-Mascheroni constant. Sci. Magna 2010, 6: 102–110.
13.
Zurück zum Zitat Chen C-P, Mortici C: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2012, 64: 391–398. 10.1016/j.camwa.2011.03.099MathSciNetCrossRef Chen C-P, Mortici C: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2012, 64: 391–398. 10.1016/j.camwa.2011.03.099MathSciNetCrossRef
14.
Zurück zum Zitat Chen C-P, Srivastava HM, Li L, Manyama S: Inequalities and monotonicity properties for the psi (or digamma) function and estimates for the Euler-Mascheroni constant. Integral Transforms Spec. Funct. 2011, 22: 681–693. 10.1080/10652469.2010.538525MathSciNetCrossRef Chen C-P, Srivastava HM, Li L, Manyama S: Inequalities and monotonicity properties for the psi (or digamma) function and estimates for the Euler-Mascheroni constant. Integral Transforms Spec. Funct. 2011, 22: 681–693. 10.1080/10652469.2010.538525MathSciNetCrossRef
15.
Zurück zum Zitat DeTemple DW: A quicker convergence to Euler’s constant. Am. Math. Mon. 1993, 100: 468–470. 10.2307/2324300MathSciNetCrossRef DeTemple DW: A quicker convergence to Euler’s constant. Am. Math. Mon. 1993, 100: 468–470. 10.2307/2324300MathSciNetCrossRef
16.
Zurück zum Zitat Mortici C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2010, 59: 2610–2614. 10.1016/j.camwa.2010.01.029MathSciNetCrossRef Mortici C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2010, 59: 2610–2614. 10.1016/j.camwa.2010.01.029MathSciNetCrossRef
17.
Zurück zum Zitat Mortici C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 2010, 215: 3443–3448. 10.1016/j.amc.2009.10.039MathSciNetCrossRef Mortici C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 2010, 215: 3443–3448. 10.1016/j.amc.2009.10.039MathSciNetCrossRef
18.
Zurück zum Zitat Negoi T: A faster convergence to the constant of Euler. Gaz. Mat., Ser. A 1997, 15: 111–113. (in Romanian) Negoi T: A faster convergence to the constant of Euler. Gaz. Mat., Ser. A 1997, 15: 111–113. (in Romanian)
19.
Zurück zum Zitat Vernescu A: A new accelerated convergence to the constant of Euler. Gaz. Mat., Ser. A 1999, 96(17):273–278. (in Romanian) Vernescu A: A new accelerated convergence to the constant of Euler. Gaz. Mat., Ser. A 1999, 96(17):273–278. (in Romanian)
20.
Zurück zum Zitat Villarino M: Ramanujan’s harmonic number expansion into negative powers of a triangular number. J. Inequal. Pure Appl. Math. 2008., 9: Article ID 89. Available online at http://www.emis.de/journals/JIPAM/images/245_07_JIPAM/245_07.pdf Villarino M: Ramanujan’s harmonic number expansion into negative powers of a triangular number. J. Inequal. Pure Appl. Math. 2008., 9: Article ID 89. Available online at http://​www.​emis.​de/​journals/​JIPAM/​images/​245_​07_​JIPAM/​245_​07.​pdf
21.
Zurück zum Zitat Yang S: On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant. J. Math. Anal. Appl. 2012, 396: 689–693. 10.1016/j.jmaa.2012.07.007MathSciNetCrossRef Yang S: On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant. J. Math. Anal. Appl. 2012, 396: 689–693. 10.1016/j.jmaa.2012.07.007MathSciNetCrossRef
22.
23.
Zurück zum Zitat Abramowitz M, Stegun IA (Eds): Applied Mathematics Series 55 In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th edition. National Bureau of Standards, Washington; 1972. Abramowitz M, Stegun IA (Eds): Applied Mathematics Series 55 In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th edition. National Bureau of Standards, Washington; 1972.
24.
Zurück zum Zitat Mortici C: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23: 97–100. 10.1016/j.aml.2009.08.012MathSciNetCrossRef Mortici C: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23: 97–100. 10.1016/j.aml.2009.08.012MathSciNetCrossRef
25.
Zurück zum Zitat Mortici C: Product approximations via asymptotic integration. Am. Math. Mon. 2010, 117: 434–441. 10.4169/000298910X485950MathSciNetCrossRef Mortici C: Product approximations via asymptotic integration. Am. Math. Mon. 2010, 117: 434–441. 10.4169/000298910X485950MathSciNetCrossRef
26.
Zurück zum Zitat Alzer H: On some inequalities for the gamma and psi functions. Math. Comput. 1997, 66: 373–389. 10.1090/S0025-5718-97-00807-7MathSciNetCrossRef Alzer H: On some inequalities for the gamma and psi functions. Math. Comput. 1997, 66: 373–389. 10.1090/S0025-5718-97-00807-7MathSciNetCrossRef
Metadaten
Titel
On the harmonic number expansion by Ramanujan
verfasst von
Cristinel Mortici
Chao-Ping Chen
Publikationsdatum
01.12.2013
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2013
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2013-222

Weitere Artikel der Ausgabe 1/2013

Journal of Inequalities and Applications 1/2013 Zur Ausgabe

Premium Partner