Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2013

Open Access 01.12.2013 | Research

Fixed point and coupled fixed point theorems on b-metric-like spaces

verfasst von: Mohammed Ali Alghamdi, Nawab Hussain, Peyman Salimi

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2013

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We first introduce the concept of b-metric-like space which generalizes the notions of partial metric space, metric-like space and b-metric space. Then we establish the existence and uniqueness of fixed points in a b-metric-like space as well as in a partially ordered b-metric-like space. As an application, we derive some new fixed point and coupled fixed point results in partial metric spaces, metric-like spaces and b-metric spaces. Moreover, some examples and an application to integral equations are provided to illustrate the usability of the obtained results.
MSC:47H10, 54H25, 55M20.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

1 Introduction

There exist many generalizations of the concept of metric spaces in the literature. In particular, Matthews [1] introduced the notion of partial metric space and proved that the Banach contraction mapping theorem can be generalized to the partial metric context for applications in program verification. After that, fixed point results in partial metric spaces have been studied by many authors [1, 2]. The concept of b-metric space was introduced and studied by Bakhtin [3] and Czerwik [4]. Since then several papers have dealt with fixed point theory for single-valued and multi-valued operators in b-metric spaces (see [58] and references therein). Recently, Amini-Harandi [9, 10] introduced the notion of metric-like space, which is an interesting generalization of partial metric space and dislocated metric space [1113]. In this paper, we first introduce a new generalization of metric-like space and partial metric space which is called a b-metric-like space. Then, we give some fixed point results in such spaces. Our fixed point theorems, even in the case of metric-like spaces and partial metric spaces, generalize and improve some well-known results in the literature. Moreover, some examples and an application to integral equations are provided to illustrate the usability of the obtained results.

2 b-Metric-like spaces

Matthews [1] introduced the concept of a partial metric space as follows.
Definition 2.1 A mapping p : X × X R + , where X is a nonempty set, is said to be a partial metric on X if for any x , y , z X the following four conditions hold true:
(P1) x = y if and only if p ( x , x ) = p ( y , y ) = p ( x , y ) ;
(P2) p ( x , x ) p ( x , y ) ;
(P3) p ( x , y ) = p ( y , x ) ;
(P4) p ( x , z ) p ( x , y ) + p ( y , z ) p ( y , y ) .
The pair ( X , p ) is then called a partial metric space.
Definition 2.2 [9]
A mapping σ : X × X R + , where X is a nonempty set, is said to be a metric-like on X if for any x , y , z X the following three conditions hold true:
(σ 1) σ ( x , y ) = 0 x = y ;
(σ 2) σ ( x , y ) = σ ( y , x ) ;
(σ 3) σ ( x , z ) σ ( x , y ) + σ ( y , z ) .
The pair ( X , σ ) is then called a metric-like space. A metric-like on X satisfies all of the conditions of a metric except that σ ( x , x ) may be positive for x X .
Every partial metric space is a metric-like space but not conversely in general (see [9, 10]).
The concept of b-metric space was introduced by Czerwik in [4]. Since then, several papers have been published on the fixed point theory of various classes of single-valued and multi-valued operators in b-metric spaces (see, e.g., [68]).
Definition 2.3 A b-metric on a nonempty set X is a function D : X × X [ 0 , + ) such that for all x , y , z X and a constant K 1 the following three conditions hold true:
( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 1) if D ( x , y ) = 0 x = y ;
( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 2) D ( x , y ) = D ( y , x ) ;
( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) D ( x , y ) K ( D ( x , z ) + D ( z , y ) ) .
The pair ( X , D ) is called a b-metric space.
Definition 2.4 A b-metric-like on a nonempty set X is a function D : X × X [ 0 , + ) such that for all x , y , z X and a constant K 1 the following three conditions hold true:
( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 1) if D ( x , y ) = 0 x = y ;
( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 2) D ( x , y ) = D ( y , x ) ;
( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) D ( x , y ) K ( D ( x , z ) + D ( z , y ) ) .
The pair ( X , D ) is called a b-metric-like space.
Example 2.5 Let X = [ 0 , ) . Define the function D : X 2 [ 0 , ) by D ( x , y ) = ( x + y ) 2 . Then ( X , D ) is a b-metric-like space with constant K = 2 . Clearly, ( X , D ) is not a b-metric or metric-like space. Indeed, for all x , y , z X ,
D ( x , y ) = ( x + y ) 2 ( x + z + z + y ) 2 = ( x + z ) 2 + ( z + y ) 2 + 2 ( x + z ) ( z + y ) 2 [ ( x + z ) 2 + ( z + y ) 2 ] = 2 ( D ( x , z ) + D ( z , y ) )
and so ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) holds. Clearly, ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 1) and ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 2) hold.
Similarly, we have the following example.
Example 2.6 Let X = [ 0 , ) . Define the function D : X 2 [ 0 , ) by D ( x , y ) = ( max { x , y } ) 2 . Then ( X , D ) is a b-metric-like space with constant K = 2 . Clearly, ( X , D ) is not a b-metric or metric-like space.
Example 2.7 Let C b ( X ) = { f : X R : sup x X | f ( x ) | < + } . The function D : X × X R + , defined by
D ( f , g ) = sup x X ( | f ( x ) | + | g ( x ) | ) 3 3 for all  f , g C b ( X ) ,
is a b-metric-like with constant K = 4 3 , and so ( X , D , 4 3 ) is a b-metric-like space.
For this, note that if a, b are two nonnegative real numbers, then
( a + b ) 3 4 ( a 3 + b 3 ) and a + b 3 a 3 + b 3 .
This implies that
D ( f , g ) 4 3 ( D ( f , h ) + D ( h , g ) ) for all  f , g , h C b ( X ) .
Let ( X , D ) be a b-metric-like space. Let x X and r > 0 , then the set
B ( x , r ) = { y X : | D ( x , y ) D ( x , x ) | < r }
is called an open ball with center at x and radius r > 0 .
Now we have the following definitions.
Definition 2.8 Let ( X , D ) be a b-metric-like space, and let { x n } be a sequence of points of X. A point x X is said to be the limit of the sequence { x n } if lim n + D ( x , x n ) = D ( x , x ) , and we say that the sequence { x n } is convergent to x and denote it by x n x as n .
Definition 2.9 Let ( X , D ) be a b-metric-like space.
(S1) A sequence { x n } is called Cauchy if and only if lim m , n D ( x n , x m ) exists and is finite.
(S2) A b-metric-like space ( X , D ) is said to be complete if and only if every Cauchy sequence { x n } in X converges to x X so that
lim m , n D ( x n , x m ) = D ( x , x ) = lim n D ( x n , x ) .
Proposition 2.10Let ( X , D , K ) be ab-metric-like space, and let { x n } be a sequence inXsuch that lim n D ( x n , x ) = 0 . Then
(A)
xis unique;
 
(B)
1 K D ( x , y ) lim n D ( x n , y ) K D ( x , y ) for all y X .
 
Proof Let us prove (A).
Assume that there exists a y X such that lim n D ( x n , y ) = 0 , then
0 D ( y , x ) K ( lim n D ( x n , y ) + lim n D ( x n , x ) ) = 0 .
Hence, from ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 1) we have y = x .
(B)
From (D3) we have
1 K D ( x , y ) lim n D ( x n , x ) lim n D ( x n , y ) K ( D ( x , y ) + lim n D ( x n , x ) ) ,
and so
1 K D ( x , y ) lim n D ( x n , y ) K D ( x , y ) for all  y X .
 □
Definition 2.11 Let ( X , D ) be a b-metric-like space, and let U be a subset of X. We say U is an open subset of X if for all x U there exists r > 0 such that B ( x , r ) U . Also, V X is a closed subset of X if X V is an open subset of X.
Proposition 2.12Let ( X , D , K ) be ab-metric-like space, and letVbe a subset ofX. ThenVis closed if and only if for any sequence { x n } inV, which converges tox, we have x V .
Proof At first, we suppose that V is closed. Let x V . By the above definition, X V is an open set. Then there is an r > 0 such that B ( x , r ) X V . On the other hand, since x n x as n , then
lim n | D ( x n , x ) D ( x , x ) | = 0 .
Hence, there exists n 0 N such that for all n n 0 we have
| D ( x n , x ) D ( x , x ) | < r .
That is, for all n n 0 , { x n } B ( x , r ) X V , which is a contradiction. Since for all n N , { x n } V . Conversely, suppose that for any sequence { x n } in V which converges to x, we have x V . Let y V . Let us prove that there exists r 0 > 0 such that B ( y , r 0 ) V = . Assume to the contrary that for all r > 0 , we have B ( y , r ) V . Then, for all n N , chose x n B ( y , 1 / n ) V . Therefore, | D ( x n , y ) D ( y , y ) | < 1 / n for all n N . Hence, x n y as n . Our assumption on V implies y V , which is a contradiction. Then, for all y V , there exists r 0 > 0 such that B ( y , r 0 ) V = . That is, V is closed. □
Lemma 2.13Let ( X , D , K ) be ab-metric-like space, and let { x k } k = 0 n X . Then
D ( x n , x 0 ) K D ( x 0 , x 1 ) + + K n 1 D ( x n 2 , x n 1 ) + K n 1 D ( x n 1 , x n ) .
From Lemma 2.13, we deduce the following result.
Lemma 2.14Let { y n } be a sequence in ab-metric-like space ( X , D , K ) such that
D ( y n , y n + 1 ) λ D ( y n 1 , y n )
for someλ, 0 < λ < 1 / K , and each n N . Then lim m , n D ( y m , y n ) = 0 .
Let ( X , D , K ) be a b-metric-like space. Define D s : X 2 [ 0 , ) by
D s ( x , y ) = | 2 D ( x , y ) D ( x , x ) D ( y , y ) | .
Clearly, D s ( x , x ) = 0 for all x X .

3 Fixed point results for expansive mappings

The study of expansive mappings is a very interesting research area in fixed point theory (see, e.g., [1421]). In this section we prove some new fixed point results on expansive mappings in the setting of a b-metric-like space. Our results generalize and extend some old and recent fixed point results in the literature.
Theorem 3.1Let ( X , D , K ) be a completeb-metric-like space. Assume that the mapping T : X X is onto and satisfies
D ( T x , T y ) [ R + L min { D s ( x , T x ) , D s ( y , T y ) , D s ( x , T y ) , D s ( y , T x ) } ] D ( x , y )
(3.1)
for all x , y X , where R > K , L 0 . ThenThas a fixed point.
Proof Let x 0 X , since T is onto, then there exists x 1 X such that x 0 = T x 1 . By continuing this process, we get x n = T x n + 1 for all n N { 0 } . In case x n 0 = x n 0 + 1 for some n 0 N { 0 } , then it is clear that x n 0 is a fixed point of T. Now assume that x n x n + 1 for all n. From (3.1) with x = x n and y = x n + 1 we get
D ( T x n , T x n + 1 ) [ R + L min { D s ( x n , T x n ) , D s ( x n + 1 , T x n + 1 ) , D s ( x n , T x n + 1 ) , D s ( x n + 1 , T x n ) } ] D ( x n , x n + 1 ) ,
which implies
D ( x n 1 , x n ) [ R + L min { D s ( x n , x n 1 ) , D s ( x n + 1 , x n ) , D s ( x n , x n ) , D s ( x n + 1 , x n 1 ) } ] D ( x n , x n + 1 ) = R D ( x n , x n + 1 ) ,
and so
D ( x n , x n + 1 ) h D ( x n 1 , x n ) , where  h = 1 R < 1 K .
Then by Lemma 2.14 we have lim m , n D ( x n , x m ) = 0 . Now, since lim m , n D ( x n , x m ) = 0 exists (and is finite), so { x n } is a Cauchy sequence. Since ( X , D , K ) is a complete b-metric-like space, the sequence { x n } in X converges to z X so that
lim m , n D ( x n , z ) = D ( z , z ) = lim m , n D ( x n , x m ) = 0 .
Since T is onto, there exists w X such that z = T w . From (3.1) we have
D ( x n , z ) = D ( T x n + 1 , T w ) [ R + L min { D s ( x n + 1 , T x n + 1 ) , D s ( w , T w ) , D s ( x n + 1 , T w ) , D s ( w , T x n + 1 ) } ] D ( x n + 1 , w ) = [ R + L min { D s ( x n + 1 , x n ) , D s ( w , z ) , D s ( x n + 1 , z ) , D s ( w , x n ) } ] D ( x n + 1 , w ) .
Taking limit as n in the above inequality, we get
0 = lim n D ( x n , z ) R lim n D ( x n + 1 , w ) ,
which implies lim n D ( x n + 1 , w ) = 0 . By Proposition 2.10 (A), we get z = w . That is, z = T z . □
If in Theorem 3.1 we take L = 0 , then we deduce the following corollary.
Corollary 3.2Let ( X , D , K ) be a completeb-metric-like space. Assume that the mapping T : X X is onto and satisfies
D ( T x , T y ) R D ( x , y )
for all x , y X , where R > K . ThenThas a fixed point.
Example 3.3 Let X = [ 0 , ) and let a b-metric-like D : X × X R + be defined by
D ( x , y ) = ( x + y ) 2 .
Clearly, ( X , D , 2 ) is a complete b-metric-like space. Let T : X X be defined by
T x = { 6 x if  x [ 0 , 1 ) , 5 x + 1 if  x [ 1 , 2 ) , 4 x + 3 if  x [ 2 , ) .
Also, clearly, T is an onto mapping. Now, we consider following cases:
★ Let x , y [ 0 , 1 ) , then
D ( T x , T y ) = ( 6 x + 6 y ) 2 = 36 ( x + y ) 2 3 ( x + y ) 2 = 3 D ( x , y ) .
★ Let x , y [ 1 , 2 ) , then
D ( T x , T y ) = ( 5 x + 5 y + 2 ) 2 ( 5 x + 5 y ) 2 = 25 ( x + y ) 2 3 ( x + y ) 2 = 3 D ( x , y ) .
★ Let x , y [ 2 , ) , then
D ( T x , T y ) = ( 4 x + 4 y + 6 ) 2 ( 4 x + 4 y ) 2 = 16 ( x + y ) 2 3 ( x + y ) 2 = 3 D ( x , y ) .
★ Let x [ 0 , 1 ) and y [ 1 , 2 ) , then
D ( T x , T y ) = ( 6 x + 5 y + 1 ) 2 ( 5 x + 5 y ) 2 = 25 ( x + y ) 2 3 ( x + y ) 2 = 3 D ( x , y ) .
★ Let x [ 0 , 1 ) and y [ 2 , ) , then
D ( T x , T y ) = ( 6 x + 4 y + 3 ) 2 ( 4 x + 4 y ) 2 = 16 ( x + y ) 2 3 ( x + y ) 2 = 3 D ( x , y ) .
★ Let x [ 1 , 2 ) and y [ 2 , ) , then
D ( T x , T y ) = ( 5 x + 4 y + 4 ) 2 ( 4 x + 4 y ) 2 = 16 ( x + y ) 2 3 ( x + y ) 2 = 3 D ( x , y ) .
That is, D ( T x , T y ) R D ( x , y ) for all x , y X , where R = 3 > 2 = K . The conditions of Corollary 3.2 are satisfied and T has a fixed point x = 0 .
Let Ψ B L denote the class of those functions B : ( 0 , ) ( L 2 , ) which satisfy the condition B ( t n ) ( L 2 ) + t n 0 , where L > 0 .
Theorem 3.4Let ( X , D , K ) be a completeb-metric-like space. Assume that the mapping T : X X is onto and satisfies
D ( T x , T y ) B ( D ( x , y ) ) D ( x , y )
(3.2)
for all x , y X , where B Ψ B K . ThenThas a fixed point.
Proof Let x 0 X , since T is onto, so there exists x 1 X such that x 0 = T x 1 . By continuing this process, we get x n = T x n + 1 for all n N { 0 } . In case x n 0 = x n 0 + 1 for some n 0 N { 0 } , then it is clear that x n 0 is a fixed point of T. Now assume that x n x n + 1 for all n. From (3.2) with x = x n and y = x n + 1 , we get
D ( x n 1 , x n ) = D ( T x n , T x n + 1 ) B ( D ( x n , x n + 1 ) ) D ( x n , x n + 1 ) K 2 D ( x n , x n + 1 ) D ( x n , x n + 1 ) .
(3.3)
Then the sequence { D ( x n , x n + 1 ) } is a decreasing sequence in R + and so there exists s 0 such that lim n D ( x n , x n + 1 ) = s . Let us prove that s = 0 . Suppose to the contrary that s > 0 . By (3.3) we can deduce
K 2 D ( x n 1 , x n ) D ( x n , x n + 1 ) D ( x n 1 , x n ) D ( x n , x n + 1 ) B ( D ( x n , x n + 1 ) ) K 2 .
By taking limit as n in the above inequality, we have lim n B ( D ( x n , x n + 1 ) ) = K 2 . Hence,
s = lim n D ( x n , x n + 1 ) = 0 ,
which is a contradiction. That is, s = 0 . We shall show that lim sup m , n D ( x n , x m ) = 0 . Suppose to the contrary that
lim sup m , n D ( x n , x m ) > 0 .
By (3.2) we have
D ( x n , x m ) = D ( T x n + 1 , T x m + 1 ) B ( D ( x n + 1 , x m + 1 ) ) D ( x n + 1 , x m + 1 ) .
That is,
D ( x n , x m ) B ( D ( x n + 1 , x m + 1 ) ) D ( x n + 1 , x m + 1 ) .
Then by ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) we get
D ( x n , x m ) K D ( x n , x n + 1 ) + K 2 D ( x n + 1 , x m + 1 ) + K 2 D ( x m + 1 , x m ) K D ( x n , x n + 1 ) + K 2 D ( x n , x m ) B ( D ( x n + 1 , x m + 1 ) ) + K 2 D ( x m + 1 , x m ) .
Therefore,
D ( x n , x m ) ( 1 K 2 B ( D ( x n + 1 , x m + 1 ) ) ) 1 ( K D ( x n , x n + 1 ) + K 2 D ( x m + 1 , x m ) ) .
By taking limit as m , n in the above inequality, since lim sup m , n D ( x n , x m ) > 0 and s = lim n D ( x n , x n + 1 ) = 0 , then we obtain
lim sup m , n ( 1 K 2 B ( D ( x n + 1 , x m + 1 ) ) ) 1 = ,
which implies
lim sup m , n B ( D ( x n + 1 , x m + 1 ) ) = ( K 2 ) + ,
and so
lim sup m , n D ( x n + 1 , x m + 1 ) = 0 ,
which is a contradiction. Hence, lim sup m , n D ( x n , x m ) = 0 . Now, since lim m , n D ( x n , x m ) = 0 exists (and is finite), so { x n } is a Cauchy sequence. Since ( X , D , K ) is a complete b-metric-like space, the sequence { x n } in X converges to z X so that
lim m , n D ( x n , z ) = D ( z , z ) = lim m , n D ( x n , x m ) = 0 .
As T is onto, so there exists w X such that z = T w . Let us prove that w = z . Suppose to the contrary that z w . Then by (3.2) we have
D ( x n , z ) = D ( T x n + 1 , T w ) B ( D ( x n + 1 , w ) ) D ( x n + 1 , w ) .
By taking limit as n in the above inequality and applying Proposition 2.10(B), we have
0 = lim n D ( x n , z ) lim n B ( D ( x n + 1 , w ) ) lim n D ( x n + 1 , w ) 1 K lim n B ( D ( x n + 1 , z ) ) D ( z , w )
and hence
lim n B ( D ( x n + 1 , z ) ) = 0 ,
which is a contradiction. Indeed, lim n B ( D ( x n + 1 , z ) ) K 2 . Since B ( t ) > K 2 for all t [ 0 , ) , therefore z = w . That is, z = T w = T z . □
Example 3.5 Let X = [ 0 , ) and D : X × X R + be defined by
D ( x , y ) = ( max { x , y } ) 2 .
Clearly, ( X , D , 2 ) is a complete b-metric-like space. Let T : X X be defined by
T x = 4 x 1 + x 2 .
Also define B : ( 0 , ) ( 4 , ) by B ( t ) = 4 ( 1 + t ) . At first we show that T is an onto mapping. For a given a X , we choose x 0 = 1 2 4 + a 2 2 . Then
T x 0 = ( 4 + a 2 2 ) ( 4 + a 2 + 2 ) = a .
So, T is an onto mapping. Without loss of generality, we assume that x y . Now, since
T y 2 y 1 + y 2 ,
so
( T y ) 2 4 ( 1 + y 2 ) y 2 ;
equivalently,
( max { T x , T y } ) 2 4 ( 1 + ( max { x , y } ) 2 ) ( max { x , y } ) 2
and hence
D ( T x , T y ) 4 ( 1 + D ( x , y ) ) D ( x , y ) .
That is,
D ( T x , T y ) B ( D ( x , y ) ) D ( x , y ) .
The conditions of Theorem 3.4 hold and T has a fixed point (here, x = 0 is a fixed point of T).
Note that b-metric-like spaces are a proper extension of partial metric, metric-like and b-metric spaces. Hence, we can deduce the following corollaries in the settings of partial metric, metric-like and b-metric spaces, respectively.
Corollary 3.6Let ( X , p ) be a complete partial metric space. Assume that the mapping T : X X is onto and satisfies
p ( T x , T y ) B ( p ( x , y ) ) p ( x , y )
for all x , y X , where B Ψ B 1 . ThenThas a fixed point.
Corollary 3.7Let ( X , σ ) be a complete metric-like space. Assume that the mapping T : X X is onto and satisfies
σ ( T x , T y ) B ( σ ( x , y ) ) σ ( x , y )
for all x , y X , where B Ψ B 1 . ThenThas a fixed point.
Corollary 3.8Let ( X , d , K ) be a completeb-metric space. Assume that the mapping T : X X is onto and satisfies
d ( T x , T y ) B ( d ( x , y ) ) d ( x , y )
(3.4)
for all x , y X , where B Ψ B K . ThenThas a fixed point.

4 Fixed point results in partially ordered b-metric-like spaces

In this section we prove certain new fixed point theorems in partially ordered b-metric-like spaces which generalize and extend corresponding results of Amini-Harandi [9, 10] and many others (see [22]).
Let Ψ L L denote the class of those functions L : ( 0 , ) ( 0 , 1 L 2 ) which satisfy the condition L ( t n ) ( 1 L 2 ) + t n 0 , where L > 0 .
Theorem 4.1Let ( X , D , K , ) be a partially ordered completeb-metric-like space, and let T : X X be a non-decreasing mapping such that
D ( T x , T y ) L ( M ( x , y ) ) M ( x , y ) + J ( N ( x , y ) ) N ( x , y )
(4.1)
for all x , y X with x y , where L Ψ L K , J : [ 0 , ) [ 0 , ) is a bounded function and
M ( x , y ) = max { D ( x , y ) , D ( x , T x ) , D ( y , T y ) , D ( x , T y ) + D ( y , T x ) 6 K }
and
N ( x , y ) = min { D s ( x , T x ) , D s ( y , T y ) , D s ( x , T y ) , D s ( y , T x ) } .
Also, suppose that the following assertions hold:
(i)
there exists x 0 X such that x 0 T x 0 ;
 
(ii)
for an increasing sequence { x n } X converging to x X , we have x n x for all n N ;
 
thenThas a fixed point.
Proof Let x 0 T x 0 . If x 0 = T x 0 , then the result is proved. Hence we suppose that x 0 f x 0 . Define a sequence { x n } by x n = T n x 0 = T x n 1 for all n N . Since T is non-decreasing and x 0 T x 0 , then
x 0 x 1 x 2 ,
(4.2)
and hence { x n } is a non-decreasing sequence. If x n = x n + 1 = T x n for some n N , then the result is proved as x n is a fixed point of T. In what follows we will suppose that x n x n + 1 for all n N . From (4.1) and (4.2) we have
D ( x n , x n + 1 ) = D ( T x n 1 , T x n ) L ( M ( x n 1 , x n ) ) M ( x n 1 , x n ) + J ( N ( x n 1 , x n ) ) N ( x n 1 , x n ) ,
where
N ( x n 1 , x n ) = min { D s ( x n 1 , T x n 1 ) , D s ( x n , T x n ) , D s ( x n 1 , T x n ) , D s ( x n , T x n 1 ) } = min { D s ( x n 1 , x n ) , D s ( x n , x n + 1 ) , D s ( x n 1 , x n + 1 ) , D s ( x n , x n ) } = 0 .
Then
D ( x n , x n + 1 ) L ( M ( x n 1 , x n ) ) M ( x n 1 , x n ) .
(4.3)
On the other hand, from ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) we have
D ( x n 1 , x n + 1 ) K ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) )
and
D ( x n , x n ) 2 K D ( x n , x n + 1 ) 2 K ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) ) .
Then
D ( x n 1 , x n + 1 ) + D ( x n , x n ) 6 K 1 2 ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) )
and hence
M ( x n 1 , x n ) = max { D ( x n 1 , x n ) , D ( x n 1 , T x n 1 ) , D ( x n , T x n ) , D ( x n 1 , T x n ) + D ( x n , T x n 1 ) 6 K } = max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) , D ( x n 1 , x n + 1 ) + D ( x n , x n ) 6 K } max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) , 1 2 ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) ) } = max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) } M ( x n 1 , x n ) .
That is,
M ( x n 1 , x n ) = max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) } .
Now by (4.3) we get
D ( x n , x n + 1 ) L ( max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) } ) max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) } .
If max { D ( x n 1 , x n ) , D ( x n , x n + 1 ) } = D ( x n , x n + 1 ) , then
D ( x n , x n + 1 ) L ( D ( x n , x n + 1 ) ) D ( x n , x n + 1 ) < 1 K 2 D ( x n , x n + 1 ) D ( x n , x n + 1 ) ,
which is a contradiction. Hence,
D ( x n , x n + 1 ) L ( D ( x n 1 , x n ) ) D ( x n 1 , x n ) D ( x n 1 , x n ) ,
(4.4)
and so the sequence { D ( x n , x n + 1 ) } is a decreasing sequence in R + . Then there exists s 0 such that lim n D ( x n , x n + 1 ) = s . By (4.4) we can write
D ( x n , x n + 1 ) K 2 D ( x n 1 , x n ) D ( x n , x n + 1 ) D ( x n 1 , x n ) L ( D ( x n 1 , x n ) ) 1 K 2 .
Taking limit as n in the above inequality, we get
lim n L ( D ( x n 1 , x n ) ) = 1 K 2 ,
and so s = lim n D ( x n 1 , x n ) = 0 . Now we want to show that lim sup m , n D ( x n , x m ) = 0 . Suppose to the contrary that
lim sup m , n D ( x n , x m ) > 0 .
At first,
lim sup m , n N ( x n , x m ) = lim sup m , n min { D s ( x n , x n + 1 ) , D s ( x m , x m + 1 ) , D s ( x n , x m + 1 ) , D s ( x m , x n + 1 ) } = 0
(4.5)
and
lim sup m , n M ( x n , x m ) = lim sup m , n max { D ( x n , x m ) , D ( x n , x n + 1 ) , D ( x m , x m + 1 ) , D ( x n , x m + 1 ) + D ( x m , x n + 1 ) 6 K } lim sup m , n max { D ( x n , x m ) , D ( x n , x n + 1 ) , D ( x m , x m + 1 ) , K ( D ( x n , x m ) + D ( x m , x m + 1 ) ) + K ( D ( x m , x n ) + D ( x n , x n + 1 ) ) 6 K } = lim sup m , n D ( x n , x m ) lim sup m , n M ( x n , x m ) .
That is,
lim sup m , n M ( x n , x m ) = lim sup m , n D ( x n , x m ) .
(4.6)
Now, by (4.1) we have
lim sup m , n D ( x n + 1 , x m + 1 ) = lim sup m , n D ( T x n , T x m ) lim sup m , n L ( M ( x n , x m ) ) lim sup m , n M ( x n , x m ) + lim sup m , n J ( N ( x n , x m ) ) lim sup m , n N ( x n , x m ) ,
and so from (4.5) and (4.6) we get
lim sup m , n D ( x n + 1 , x m + 1 ) lim sup m , n L ( M ( x n , x m ) ) lim sup m , n D ( x n , x m ) .
(4.7)
By ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) we have
D ( x n , x m ) K D ( x n , x n + 1 ) + K 2 D ( x n + 1 , x m + 1 ) + K 2 D ( x m + 1 , x m ) .
Taking limitsup as n in the above inequality, we have
1 K 2 lim sup m , n D ( x n , x m ) lim sup m , n D ( x n + 1 , x m + 1 ) .
Then by (4.7) we deduce
1 K 2 lim sup m , n D ( x n , x m ) lim sup m , n L ( M ( x n , x m ) ) lim sup m , n D ( x n , x m ) .
Now, since lim sup m , n D ( x n , x m ) > 0 , then
1 K 2 lim sup m , n L ( M ( x n , x m ) ) .
On the other hand, since lim sup m , n L ( M ( x n , x m ) ) 1 K 2 , hence
lim sup m , n L ( M ( x n , x m ) ) = 1 K 2 .
This implies that
lim sup m , n D ( x n , x m ) = lim sup m , n M ( x n , x m ) = 0 ,
which is contradiction. Thus, lim sup m , n D ( x n , x m ) = 0 . Now, since lim m , n D ( x n , x m ) = 0 exists (and is finite), so { x n } is a Cauchy sequence. As ( X , D , K ) is a complete b-metric-like space, the sequence { x n } in X converges to z X so that
lim m , n D ( x n , z ) = D ( z , z ) = lim m , n D ( x n , x m ) = 0 .
From (ii) and (4.1), with x = x n and y = z , we obtain
D ( x n + 1 , T z ) = D ( T x n , T z ) L ( M ( x n , z ) ) M ( x n , z ) + J ( N ( x n , z ) ) N ( x n , z ) .
(4.8)
On the other hand,
lim n N ( x n , z ) = lim n min { D s ( x n , x n + 1 ) , D s ( z , T z ) , D s ( x n , T z ) , D s ( z , x n + 1 ) } = 0
and
lim n M ( x n , z ) = lim n max { D ( x n , z ) , D ( x n , x n + 1 ) , D ( z , T z ) , D ( x n , T z ) + D ( z , x n + 1 ) 6 K } D ( z , T z ) (by applying Proposition 2.10(B)) .
Then lim n M ( x n , z ) = D ( z , T z ) . Again, by using Proposition 2.10(B) and (4.8), we have
1 K 2 D ( z , T z ) 1 K D ( z , T z ) lim n D ( x n + 1 , T z ) lim n L ( M ( x n , z ) ) D ( z , T z ) .
Now, if D ( z , T z ) > 0 , then lim n L ( M ( x n , z ) ) = 1 K 2 . This implies
D ( z , T z ) = lim n M ( x n , z ) = 0 ,
which is a contradiction. Hence, D ( z , T z ) = 0 . That is, z = T z . □
Example 4.2 Let X = [ 0 , ) and D : X × X R + be defined by
D ( x , y ) = ( max { x , y } ) 2 .
Clearly, ( X , D , 2 ) is a complete b-metric-like space. Let T : X X be defined by
T x = { x 5 1 + x 2 if  x [ 0 , 1 ) , x 4 2 1 + x if  x ( 1 , ) .
Also, define L : ( 0 , ) ( 0 , 1 4 ) by L ( t ) = 1 4 ( 1 + t ) . Let x y x y . At first we assume that x y . Let y [ 0 , 1 ) , then T y y 2 1 + y 2 . Also, let y [ 1 , ) , then T y y 2 1 + y 2 . That is, for all y X , we have
T y y 2 1 + y 2 ,
which implies
( T y ) 2 y 2 4 ( 1 + y 2 ) ;
equivalently,
( max { T x , T y } ) 2 ( max { x , y } ) 2 4 ( 1 + ( max { x , y } ) 2 ) ,
and so
D ( T x , T y ) D ( x , y ) 4 ( 1 + D ( x , y ) ) M ( x , y ) 4 ( 1 + M ( x , y ) ) = L ( M ( x , y ) ) M ( x , y ) .
Then the conditions of Theorem 4.1 hold and T has a fixed point.
Also we have the following corollaries.
Corollary 4.3Let ( X , p , ) be a partially ordered complete partial metric space, and let T : X X be a non-decreasing mapping such that
p ( T x , T y ) L ( M ( x , y ) ) M ( x , y ) + J ( N ( x , y ) ) N ( x , y )
for all x , y X with x y , where L Ψ L 1 , J : [ 0 , ) [ 0 , ) is a bounded function and
M ( x , y ) = max { p ( x , y ) , p ( x , T x ) , p ( y , T y ) , p ( x , T y ) + p ( y , T x ) 6 }
and
N ( x , y ) = min { p s ( x , T x ) , p s ( y , T y ) , p s ( x , T y ) , p s ( y , T x ) } .
Also suppose that the following assertions hold:
(i)
there exists x 0 X such that x 0 T x 0 ;
 
(ii)
for an increasing sequence { x n } X converging to x X , we have x n x for all n N ;
 
thenThas a fixed point.
Corollary 4.4Let ( X , d , K , ) be a partially ordered completeb-metric space, and let T : X X be a non-decreasing mapping such that
d ( T x , T y ) L ( M ( x , y ) ) M ( x , y ) + J ( N ( x , y ) ) N ( x , y )
(4.9)
for all x , y X with x y , where L Ψ L K , J : [ 0 , ) [ 0 , ) is a bounded function and
M ( x , y ) = max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , d ( x , T y ) + d ( y , T x ) 4 K }
and
N ( x , y ) = 2 min { d ( x , T x ) , d ( y , T y ) , d ( x , T y ) , d ( y , T x ) } .
Also suppose that the following assertions hold:
(i)
there exists x 0 X such that x 0 T x 0 ;
 
(ii)
for an increasing sequence { x n } X converging to x X , we have x n x for all n N ;
 
thenThas a fixed point.
Remark 4.5 By utilizing the technique of Amini-Harandi [10] and Samet et al. [23], we can obtain corresponding coupled fixed point results from our Theorem 4.1 and Corollaries 4.3 and 4.4 on the basis of the following simple lemma. For more detailed literature on coupled fixed theory, we refer to [2428].
Lemma 4.6 [23] (A coupled fixed point is a fixed point)
Let F : X × X X be a given mapping. Define the mapping T : X × X X × X by
T ( x , y ) = ( F ( x , y ) , F ( y , x ) )
for all ( x , y ) X × X . Then ( x , y ) is a coupled fixed point ofFif and only if ( x , y ) is a fixed point ofT.

5 Fixed point results for cyclic Edelstein-Suzuki contraction

In 1962, Edelstein [29] proved an important version of the Banach contraction principle. In 2009, Suzuki [30] improved the results of Banach and Edelstein (see also [31, 32]). In recent years, cyclic contraction and cyclic contractive type mapping have appeared in several works (see [3338]). In this section we first prove the following result, which generalizes corresponding results of Edelstein [29], Suzuki [30] and Kirk et al. [33] to the setting of b-metric-like spaces.
Theorem 5.1Let ( X , D , K ) be a completeb-metric-like space, and let { A j } j = 1 m be a family of nonempty closed subsets ofXwith Y = j = 1 m A j . Let T : Y Y be a map satisfying
T ( A j ) A j + 1 , j = 1 , 2 , , m ,  where  A m + 1 = A 1 .
(5.1)
Assume that
1 2 K D ( x , T x ) D ( x , y ) D ( T x , T y ) α ( K + 1 ) K D ( x , y ) + β [ D ( x , T x ) + D ( y , T y ) ] D ( T x , T y ) + γ [ D ( x , T y ) + D ( y , T x ) 3 K ] + δ [ D ( x , x ) + D ( y , y ) 4 K ]
(5.2)
for all x A i and y A i + 1 , where α , β , γ , δ 0 and α + β + γ + δ < 1 K + 1 . ThenThas a fixed point in j = 1 m A j .
Proof Let x 0 A 1 and define a sequence { x n } in the following way:
x n = T x n 1 , n = 1 , 2 , 3 , .
(5.3)
We have x 0 A 1 , x 1 = T x 0 A 2 , x 2 = T x 1 A 3 , … . If x n 0 + 1 = x n 0 for some n 0 N , then, clearly, the fixed point of the map T is x n 0 . Hence, we assume that x n x n + 1 for all n N . Clearly, 1 2 K D ( x n 1 , T x n 1 ) D ( x n 1 , x n ) . Now, from (5.2) we have
D ( T x n 1 , T x n ) α ( K + 1 ) K D ( x n 1 , x n ) + β ( D ( x n 1 , T x n 1 ) + D ( x n , T x n ) ) + γ ( D ( x n 1 , T x n ) + D ( x n , T x n 1 ) 3 K ) + δ ( D ( x n 1 , x n 1 ) + D ( x n , x n ) 4 K ) ,
which implies
D ( x n , x n + 1 ) α ( K + 1 ) K D ( x n 1 , x n ) + β ( D ( x n 1 , x n ) + D ( x n , x n + 1 ) ) + γ ( D ( x n 1 , x n + 1 ) + D ( x n , x n ) 3 K ) + δ ( D ( x n 1 , x n 1 ) + D ( x n , x n ) 4 K ) .
(5.4)
From ( https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-402/MediaObjects/13660_2013_Article_831_IEq18_HTML.gif 3) we have
D ( x n 1 , x n + 1 ) K ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) )
and
D ( x n , x n ) 2 K D ( x n , x n + 1 ) 2 K ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) ) ;
and so
D ( x n 1 , x n + 1 ) + D ( x n , x n ) 3 K D ( x n , x n 1 ) + D ( x n , x n + 1 ) .
(5.5)
Also,
D ( x n 1 , x n 1 ) 2 K D ( x n , x n 1 ) 2 K ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) ) .
Then
D ( x n 1 , x n 1 ) + D ( x n , x n ) 4 K D ( x n , x n 1 ) + D ( x n , x n + 1 ) .
(5.6)
Hence, by (5.4), (5.5) and (5.6) we get
D ( x n , x n + 1 ) α ( K + 1 ) K D ( x n 1 , x n ) + ( β + γ + δ ) ( D ( x n , x n 1 ) + D ( x n , x n + 1 ) ) ,
and then
D ( x n , x n + 1 ) h D ( x n , x n 1 ) ,
where
h = [ α ( K + 1 ) K + β + γ + δ ] 1 ( β + γ + δ ) .
Now since ( K + 1 ) ( α + β + γ + δ ) < 1 , then
α K + 1 K + β + γ + δ + 1 K ( β + γ + δ ) < 1 K ,
which implies
α K + 1 K + β + γ + δ + < 1 K [ 1 ( β + γ + δ ) ] .
Then by Lemma 2.14 we have lim m , n D ( x n , x m ) = 0 . Now, since lim m , n D ( x n , x m ) = 0 exists (and is finite), so { x n } is a Cauchy sequence. Since ( X , D , K ) is a complete b-metric-like space, the sequence { x n } in X converges to z X so that
lim m , n D ( x n , z ) = D ( z , z ) = lim m , n D ( x n , x m ) = 0 .
It is easy to see that z j = 1 m A j . Since x 0 A 1 , so the subsequence { x m ( n 1 ) } n = 1 A 1 , the subsequence { x m ( n 1 ) + 1 } n = 1 A 2 and, continuing in this way, the subsequence { x m n 1 } n = 1 A m . All the m subsequences are convergent in the closed sets A j , and hence they all converge to the same limit z j = 1 m A j . Suppose that there exists n 0 N such that the following inequalities hold:
1 2 K D ( x n 0 , x n 0 + 1 ) > D ( x n 0 , z ) and 1 2 K D ( x n 0 + 1 , x n 0 + 2 ) > D ( x n 0 + 1 , z ) .
Then
D ( x n 0 , x n 0 + 1 ) K ( D ( x n 0 , z ) + D ( T x n 0 , z ) ) < 1 2 D ( x n 0 , x n 0 + 1 ) + 1 2 D ( x n 0 + 1 , x n 0 + 2 ) < 1 2 D ( x n 0 , x n 0 + 1 ) + 1 2 D ( x n 0 , x n 0 + 1 ) = D ( x n 0 , x n 0 + 1 ) ,
which is a contradiction. Hence, for every n N , we have
1 2 K D ( x n , x n + 1 ) D ( x n , z ) or 1 2 K D ( x n + 1 , x n + 2 ) D ( x n + 1 , z ) ,
and so by (5.2) we have
D ( x n + 1 , T z ) α ( K + 1 ) K D ( x n , z ) + β ( D ( x n , x n + 1 ) + D ( z , T z ) ) + γ ( D ( x n , T z ) + D ( z , x n + 1 ) 3 K ) + δ ( D ( x n , x n ) + D ( z , z ) 4 K )
(5.7)
or
D ( x n + 2 , T z ) α ( K + 1 ) K D ( x n + 1 , z ) + β ( D ( x n + 1 , x n + 2 ) + D ( z , T z ) ) + γ ( D ( x n + 1 , T z ) + D ( z , x n + 2 ) 3 K ) + δ ( D ( x n + 1 , x n + 1 ) + D ( z , z ) 4 K ) .
(5.8)
Assume that (5.7) holds. Then, by taking limit as n in (5.7), we get
lim n D ( x n + 1 , T z ) β D ( z , T z ) + γ 3 K lim n D ( x n , T z ) ,
and hence by Proposition 2.10(B) we have
1 K D ( z , T z ) β D ( z , T z ) + γ 3 D ( z , T z ) .
Therefore,
( 1 K β γ 3 ) D ( z , T z ) 0 .
On the other hand, α , β , γ , δ 0 and α + β + γ + δ < 1 K + 1 < 1 K . Then β + γ 3 β + γ < 1 K . That is, 1 K β γ 3 > 0 . Hence, D ( z , T z ) = 0 , i.e., z = T z . If (5.8) holds, then by a similar method, we can deduce that z = T z . □
If in the above theorem we take A i = X for all m, then we deduce the following corollary.
Corollary 5.2Let ( X , D , K ) be a completeb-metric-like space, and letTbe a self-mapping onX. Assume that
1 2 K D ( x , T x ) D ( x , y ) D ( T x , T y ) α ( K + 1 ) K D ( x , y ) + β ( D ( x , T x ) + D ( y , T y ) ) D ( T x , T y ) + γ ( D ( x , T y ) + D ( y , T x ) 3 K ) + δ ( D ( x , x ) + D ( y , y ) 4 K )
for all x , y X , where α , β , γ , δ 0 and α + β + γ + δ < 1 K + 1 . ThenThas a fixed point.
If in Theorem 5.1 we take α ( K + 1 ) K = β = γ 3 K = δ 4 K = R , then we deduce the following corollary.
Corollary 5.3Let ( X , D , K ) be a completeb-metric-like space, and let { A j } j = 1 m be a family of nonempty closed subsets ofXwith Y = j = 1 m A j . Let T : Y Y be a map satisfying
T ( A j ) A j + 1 , j = 1 , 2 , , m ,  where  A m + 1 = A 1 .
Assume that
1 2 K D ( x , T x ) D ( x , y ) D ( T x , T y ) R [ D ( x , y ) + D ( x , T x ) + D ( y , T y ) + D ( x , T y ) D ( T x , T y ) + D ( y , T x ) + D ( x , x ) + D ( y , y ) ]
for all x A i and y A i + 1 , where 0 R < 1 ( K + 1 ) ( 7 K + 1 ) + K . ThenThas a fixed point in j = 1 m A j .
If in Corollary 5.2 we take α ( K + 1 ) K = β = γ 3 K = δ 4 K = R , then we deduce the following corollary.
Corollary 5.4Let ( X , D , K ) be a completeb-metric-like space, and letTbe a self-mapping onX. Assume that
1 2 K D ( x , T x ) D ( x , y ) D ( T x , T y ) R [ D ( x , y ) + D ( x , T x ) + D ( y , T y ) + D ( x , T y ) D ( T x , T y ) + D ( y , T x ) + D ( x , x ) + D ( y , y ) ]
for all x , y X , where 0 R < 1 ( K + 1 ) ( 7 K + 1 ) + K . ThenThas a fixed point.
Corollary 5.5Let ( X , σ ) be a complete metric-like space, m N , let A 1 , A 2 , , A m be nonempty closed subsets ofXand Y = i = 1 m A i . Suppose that T : Y Y is an operator such that
(i)
Y = i = 1 m A i is a cyclic representation ofXwith respect toT;
 
(ii)
Assume that there exists 0 R < 1 17 such that
1 2 0 σ ( x , T x ) ρ ( t ) d t 0 σ ( x , y ) ρ ( t ) d t 0 σ ( T x , T y ) ρ ( t ) d t R 0 M ( x , y ) ρ ( t ) d t ,
 
where
M ( x , y ) = σ ( x , y ) + σ ( x , T x ) + σ ( y , T y ) + σ ( x , T y ) + σ ( y , T x ) + σ ( x , x ) + σ ( y , y )
for any x A i , y A i + 1 , i = 1 , 2 , , m , where A m + 1 = A 1 , and ρ : [ 0 , ) [ 0 , ) is a Lebesgue-integrable mapping satisfying 0 ε ρ ( t ) d t > 0 for ε > 0 . ThenThas a fixed point.
Corollary 5.6Let ( X , σ ) be a complete metric-like space, and let T : X X be a mapping such that for any x , y X there exists 0 R < 1 17 such that
1 2 0 σ ( x , T x ) ρ ( t ) d t 0 σ ( x , y ) ρ ( t ) d t 0 σ ( T x , T y ) ρ ( t ) d t R 0 M ( x , y ) ρ ( t ) d t ,
where
M ( x , y ) = σ ( x , y ) + σ ( x , T x ) + σ ( y , T y ) + σ ( x , T y ) + σ ( y , T x ) + σ ( x , x ) + σ ( y , y )
and ρ : [ 0 , ) [ 0 , ) is a Lebesgue-integrable mapping satisfying 0 ε ρ ( t ) d t for ε > 0 . ThenThas fixed point.

6 Application to the existence of solutions of integral equations

Motivated by the work in [3941], we study the existence of solutions for nonlinear integral equations using the results proved in the previous section.
Consider the integral equation
u ( t ) = 0 T G ( t , s ) f ( s , u ( s ) ) d s for all  t [ 0 , T ] ,
(6.1)
where T > 0 , f : [ 0 , T ] × R R and G : [ 0 , T ] × [ 0 , T ] [ 0 , ) are continuous functions.
Let X = C ( [ 0 , T ] ) be the set of real continuous functions on [ 0 , T ] . We endow X with the b-metric-like
D ( u , v ) = sup t [ 0 , T ] ( | u ( t ) | + | v ( t ) | ) 2 for all  u , v X .
Clearly, ( X , D , 2 ) is a complete b-metric-like space.
Let ( α , β ) X 2 , ( α 0 , β 0 ) R 2 be such that
α 0 α ( t ) β ( t ) β 0 for all  t [ 0 , T ] .
(6.2)
Assume that for all t [ 0 , T ] , we have
α ( t ) 0 T G ( t , s ) f ( s , β ( s ) ) d s
(6.3)
and
β ( t ) 0 T G ( t , s ) f ( s , α ( s ) ) d s .
(6.4)
Let, for all s [ 0 , T ] , f ( s , ) be a decreasing function, that is,
x , y R , x y f ( s , x ) f ( s , y ) .
(6.5)
Assume that
sup t [ 0 , T ] 0 T G ( t , s ) d s 1 .
(6.6)
Also, suppose that for all s [ 0 , T ] , for all x , y R with ( x β 0 and y α 0 ) or ( x α 0 and y β 0 ),
| f ( s , x ) | + | f ( s , y ) | ( 3 α 2 ( x + y ) 2 + β ( ( x + T x ) 2 + ( y + T y ) 2 ) + γ ( ( x + T y ) 2 + ( y + T x ) 2 6 ) + δ ( ( 2 x ) 2 + ( 2 y ) 2 8 ) ) 1 2 ,
(6.7)
where α , β , γ , δ 0 and α + β + γ + δ < 1 3 .
Theorem 6.1Under assumptions (6.2)-(6.7), integral equation (6.1) has a solution in { u C ( [ 0 , T ] ) : α u ( t ) β  for all  t [ 0 , T ] } .
Proof Define the closed subsets of X, A 1 and A 2 by
A 1 = { u X : u β }
and
A 2 = { u X : u α } .
Also define the mapping T : X X by
T u ( t ) = 0 T G ( t , s ) f ( s , u ( s ) ) d s for all  t [ 0 , T ] .
Let us prove that
T ( A 1 ) A 2 and T ( A 2 ) A 1 .
(6.8)
Suppose that u A 1 , that is,
u ( s ) β ( s ) for all  s [ 0 , T ] .
Applying condition (6.5), since G ( t , s ) 0 for all t , s [ 0 , T ] , we obtain that
G ( t , s ) f ( s , u ( s ) ) G ( t , s ) f ( s , β ( s ) ) for all  t , s [ 0 , T ] .
The above inequality with condition (6.3) imply that
0 T G ( t , s ) f ( s , u ( s ) ) d s 0 T G ( t , s ) f ( s , β ( s ) ) d s α ( t )
for all t [ 0 , T ] . Then we have T u A 2 .
Similarly, let u A 2 , that is,
u ( s ) α ( s ) for all  s [ 0 , T ] .
Using condition (6.5), since G ( t , s ) 0 for all t , s [ 0 , T ] , we obtain that
G ( t , s ) f ( s , u ( s ) ) G ( t , s ) f ( s , α ( s ) ) for all  t , s [ 0 , T ] .
The above inequality with condition (6.4) imply that
0 T G ( t , s ) f ( s , u ( s ) ) d s 0 T G ( t , s ) f ( s , α ( s ) ) d s β ( t )
for all t [ 0 , T ] . Then we have T u A 1 . Also, we deduce that (6.8) holds.
Now, let ( u , v ) A 1 × A 2 , that is, for all t [ 0 , T ] ,
u ( t ) β ( t ) , v ( t ) α ( t ) .
This implies from condition (6.2) that for all t [ 0 , T ] ,
u ( t ) β 0 , v ( t ) α 0 .
Now, by conditions (6.6) and (6.7), we have, for all t [ 0 , T ] ,
( | T x | + | T y | ) 2 = ( | 0 T G ( t , s ) f ( s , x ( s ) ) d s | + | 0 T G ( t , s ) f ( s , y ( s ) ) d s | ) 2 ( 0 T G ( t , s ) | f ( s , x ( s ) ) | d s + 0 T G ( t , s ) | f ( s , y ( s ) ) | d s ) 2 = ( 0 T G ( t , s ) ( | f ( s , x ( s ) ) | + | f ( s , y ( s ) ) | ) d s ) 2 ( 0 T G ( t , s ) ( 3 α 2 ( x + y ) 2 + β ( ( x + T x ) 2 + ( y + T y ) 2 ) + γ ( ( x + T y ) 2 + ( y + T x ) 2 6 ) + δ ( ( 2 x ) 2 + ( 2 y ) 2 8 ) ) 1 2 d s ) 2 ( 0 T G ( t , s ) ( 3 α 2 ( | x | + | y | ) 2 + β ( ( | x | + | T x | ) 2 + ( | y | + | T y | ) 2 ) + γ ( ( | x | + | T y | ) 2 + ( | y | + | T x | ) 2 6 ) + δ ( ( 2 | x | ) 2 + ( 2 | y | ) 2 8 ) ) 1 2 d s ) 2 ( 0 T G ( t , s ) ( 3 α 2 D ( x , y ) + β ( D ( x , T x ) + D ( y , T y ) ) + γ ( D ( x , T y ) + D ( y , T x ) 6 ) + δ ( D ( x , x ) + D ( y , y ) 8 ) ) 1 2 d s ) 2 = 3 α 2 D ( x , y ) + β ( D ( x , T x ) + D ( y , T y ) ) + γ ( D ( x , T y ) + D ( y , T x ) 6 ) + δ ( D ( x , x ) + D ( y , y ) 8 ) × ( 0 T G ( t , s ) d s ) 2 3 α 2 D ( x , y ) + β ( D ( x , T x ) + D ( y , T y ) ) + γ ( D ( x , T y ) + D ( y , T x ) 6 ) + δ ( D ( x , x ) + D ( y , y ) 8 ) ,
which implies
D ( T x , T y ) 3 α 2 D ( x , y ) + β ( D ( x , T x ) + D ( y , T y ) ) + γ ( D ( x , T y ) + D ( y , T x ) 6 ) + δ ( D ( x , x ) + D ( y , y ) 8 ) .
By a similar method, we can show that the above inequality holds if ( u , v ) A 2 × A 1 .
Now, all the conditions of Theorem 5.1 hold and T has a fixed point z in
A 1 A 2 = { u C ( [ 0 , T ] ) : α u ( t ) β  for all  t [ 0 , T ] } .
That is, z A 1 A 2 is the solution to (6.1). □

Acknowledgements

This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (390-130-1433). The first and second authors acknowledge with thanks DSR, KAU for financial support. The authors would like to express their thanks to the referees for their helpful comments and suggestions.
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Matthews SG: Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications 1994, 183–197. Matthews SG: Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications 1994, 183–197.
2.
Zurück zum Zitat Hussain N, Kadelburg Z, Radenovic S, Al-Solamy FR: Comparison functions and fixed point results in partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 605781 Hussain N, Kadelburg Z, Radenovic S, Al-Solamy FR: Comparison functions and fixed point results in partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 605781
3.
Zurück zum Zitat Bakhtin IA: The contraction mapping principle in quasimetric spaces. 30. In Functional Analysis. Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk; 1989:26–37. Bakhtin IA: The contraction mapping principle in quasimetric spaces. 30. In Functional Analysis. Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk; 1989:26–37.
4.
Zurück zum Zitat Czerwik S: Contraction mappings in b -metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1: 5–11.MathSciNetMATH Czerwik S: Contraction mappings in b -metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1: 5–11.MathSciNetMATH
5.
Zurück zum Zitat Hussain N, Djorić D, Kadelburg Z, Radenović S: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 126 Hussain N, Djorić D, Kadelburg Z, Radenović S: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 126
6.
Zurück zum Zitat Shah MH, Simic S, Hussain N, Sretenovic A, Radenovic S: Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces. J. Comput. Anal. Appl. 2012, 14: 290–297.MathSciNetMATH Shah MH, Simic S, Hussain N, Sretenovic A, Radenovic S: Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces. J. Comput. Anal. Appl. 2012, 14: 290–297.MathSciNetMATH
8.
9.
Zurück zum Zitat Amini Harandi A: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012., 2012: Article ID 204 Amini Harandi A: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012., 2012: Article ID 204
10.
Zurück zum Zitat Amini-Harandi, A: Fixed point theorems for monotone operators in partially ordered metric-like spaces and application to integral equations. J. Nonlinear Convex Anal. (in press) Amini-Harandi, A: Fixed point theorems for monotone operators in partially ordered metric-like spaces and application to integral equations. J. Nonlinear Convex Anal. (in press)
11.
Zurück zum Zitat Aage CT, Salunke JN: The results on fixed points in dislocated and dislocated quasi-metric space. Appl. Math. Sci. 2008, 2(59):2941–2948.MathSciNetMATH Aage CT, Salunke JN: The results on fixed points in dislocated and dislocated quasi-metric space. Appl. Math. Sci. 2008, 2(59):2941–2948.MathSciNetMATH
12.
Zurück zum Zitat Sarma IR, Kumari PS: On dislocated metric spaces. Int. J. Math. Arch. 2012, 3(1):72–77. Sarma IR, Kumari PS: On dislocated metric spaces. Int. J. Math. Arch. 2012, 3(1):72–77.
13.
Zurück zum Zitat Zoto K, Hoxha E: Fixed point theorems in dislocated and dislocated quasi-metric spaces. J. Adv. Stud. Topol. 2012, 3(4):119–124.MathSciNetCrossRefMATH Zoto K, Hoxha E: Fixed point theorems in dislocated and dislocated quasi-metric spaces. J. Adv. Stud. Topol. 2012, 3(4):119–124.MathSciNetCrossRefMATH
14.
Zurück zum Zitat Aage CT, Salunke JN: Some fixed point theorems for expansion onto mappings on cone metric spaces. Acta Math. Sin. Engl. Ser. 2011, 27(6):1101–1106. 10.1007/s10114-011-9606-9MathSciNetCrossRefMATH Aage CT, Salunke JN: Some fixed point theorems for expansion onto mappings on cone metric spaces. Acta Math. Sin. Engl. Ser. 2011, 27(6):1101–1106. 10.1007/s10114-011-9606-9MathSciNetCrossRefMATH
15.
Zurück zum Zitat Kumar S, Garg SK: Expansion mapping theorems in metric spaces. Int. J. Contemp. Math. Sci. 2009, 4(36):1749–1758.MathSciNetMATH Kumar S, Garg SK: Expansion mapping theorems in metric spaces. Int. J. Contemp. Math. Sci. 2009, 4(36):1749–1758.MathSciNetMATH
16.
Zurück zum Zitat Kumar S: Common fixed points theorems for expansion mappings in various spaces. Acta Math. Hung. 2008, 118(1–2):9–28. 10.1007/s10474-007-6142-2CrossRefMATH Kumar S: Common fixed points theorems for expansion mappings in various spaces. Acta Math. Hung. 2008, 118(1–2):9–28. 10.1007/s10474-007-6142-2CrossRefMATH
19.
Zurück zum Zitat Wang SZ, Li BY, Gao ZM, Iseki K: Some fixed point theorems on expansion mappings. Math. Jpn. 1984, 29: 631–636.MathSciNetMATH Wang SZ, Li BY, Gao ZM, Iseki K: Some fixed point theorems on expansion mappings. Math. Jpn. 1984, 29: 631–636.MathSciNetMATH
20.
Zurück zum Zitat Xiang T, Yuan R: A class of expansive-type Krasnosel’skii fixed point theorems. Nonlinear Anal. 2009, 71: 3229–3239. 10.1016/j.na.2009.01.197MathSciNetCrossRefMATH Xiang T, Yuan R: A class of expansive-type Krasnosel’skii fixed point theorems. Nonlinear Anal. 2009, 71: 3229–3239. 10.1016/j.na.2009.01.197MathSciNetCrossRefMATH
21.
Zurück zum Zitat Han Y, Xu S: Some new theorems of expanding mappings without continuity in cone metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 3 Han Y, Xu S: Some new theorems of expanding mappings without continuity in cone metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 3
22.
Zurück zum Zitat Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 1–8. 10.1080/00036810701714164MathSciNetCrossRefMATH Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 1–8. 10.1080/00036810701714164MathSciNetCrossRefMATH
23.
Zurück zum Zitat Samet B, Vetro C, Vetro P:Fixed point theorem for α - ψ contractive type mappings. Nonlinear Anal. 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014MathSciNetCrossRefMATH Samet B, Vetro C, Vetro P:Fixed point theorem for α - ψ contractive type mappings. Nonlinear Anal. 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014MathSciNetCrossRefMATH
24.
Zurück zum Zitat Yeol JC, Shah MH, Hussain N: Coupled fixed points of weakly F -contractive mappings in topological spaces. Appl. Math. Lett. 2011, 24: 1185–1190. 10.1016/j.aml.2011.02.004MathSciNetCrossRefMATH Yeol JC, Shah MH, Hussain N: Coupled fixed points of weakly F -contractive mappings in topological spaces. Appl. Math. Lett. 2011, 24: 1185–1190. 10.1016/j.aml.2011.02.004MathSciNetCrossRefMATH
25.
Zurück zum Zitat Gordji ME, Akbartabar E, Cho YJ, Ramezani M: Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 95 Gordji ME, Akbartabar E, Cho YJ, Ramezani M: Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 95
26.
Zurück zum Zitat Hussain N, Shah MH, Kutbi MA: Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q -function. Fixed Point Theory Appl. 2011., 2011: Article ID 703938 Hussain N, Shah MH, Kutbi MA: Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q -function. Fixed Point Theory Appl. 2011., 2011: Article ID 703938
27.
Zurück zum Zitat Sintunavarat W, Cho YJ, Kumam P: Coupled fixed point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 128 Sintunavarat W, Cho YJ, Kumam P: Coupled fixed point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 128
28.
Zurück zum Zitat Berinde V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 7347–7355. 10.1016/j.na.2011.07.053MathSciNetCrossRefMATH Berinde V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 7347–7355. 10.1016/j.na.2011.07.053MathSciNetCrossRefMATH
30.
Zurück zum Zitat Suzuki T: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71(11):5313–5317. 10.1016/j.na.2009.04.017MathSciNetCrossRefMATH Suzuki T: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71(11):5313–5317. 10.1016/j.na.2009.04.017MathSciNetCrossRefMATH
31.
Zurück zum Zitat Salimi P, Karapinar E: Suzuki-Edelstein type contractions via auxiliary functions. Math. Probl. Eng. 2013., 2013: Article ID 648528 Salimi P, Karapinar E: Suzuki-Edelstein type contractions via auxiliary functions. Math. Probl. Eng. 2013., 2013: Article ID 648528
32.
Zurück zum Zitat Suzuki T: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136: 1861–1869.MathSciNetCrossRefMATH Suzuki T: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136: 1861–1869.MathSciNetCrossRefMATH
33.
Zurück zum Zitat Kirk WA, Srinavasan PS, Veeramani P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4: 79–89.MathSciNetMATH Kirk WA, Srinavasan PS, Veeramani P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4: 79–89.MathSciNetMATH
34.
Zurück zum Zitat Păcurar M, Rus IA: Fixed point theory for cyclic φ -contractions. Nonlinear Anal. 2010, 72(3–4):1181–1187. 10.1016/j.na.2009.08.002MathSciNetCrossRefMATH Păcurar M, Rus IA: Fixed point theory for cyclic φ -contractions. Nonlinear Anal. 2010, 72(3–4):1181–1187. 10.1016/j.na.2009.08.002MathSciNetCrossRefMATH
35.
Zurück zum Zitat Petruşel G: Cyclic representations and periodic points. Stud. Univ. Babeş-Bolyai, Math. 2005, 50: 107–112.MathSciNetMATH Petruşel G: Cyclic representations and periodic points. Stud. Univ. Babeş-Bolyai, Math. 2005, 50: 107–112.MathSciNetMATH
36.
Zurück zum Zitat Aydi H, Vetro C, Sintunavarat W, Kumam P: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 124 Aydi H, Vetro C, Sintunavarat W, Kumam P: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 124
37.
Zurück zum Zitat Sintunavarat W, Kumam P: Common fixed point theorem for cyclic generalized multi-valued contraction mappings. Appl. Math. Lett. 2012, 25(11):1849–1855. 10.1016/j.aml.2012.02.045MathSciNetCrossRefMATH Sintunavarat W, Kumam P: Common fixed point theorem for cyclic generalized multi-valued contraction mappings. Appl. Math. Lett. 2012, 25(11):1849–1855. 10.1016/j.aml.2012.02.045MathSciNetCrossRefMATH
38.
Zurück zum Zitat Nashine HK, Sintunavarat W, Kumam P: Cyclic generalized contractions and fixed point results with applications to an integral equation. Fixed Point Theory Appl. 2012., 2012: Article ID 217 Nashine HK, Sintunavarat W, Kumam P: Cyclic generalized contractions and fixed point results with applications to an integral equation. Fixed Point Theory Appl. 2012., 2012: Article ID 217
39.
Zurück zum Zitat Agarwal RP, Hussain N, Taoudi MA: Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012., 2012: Article ID 245872 Agarwal RP, Hussain N, Taoudi MA: Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012., 2012: Article ID 245872
40.
Zurück zum Zitat Hussain N, Khan AR, Agarwal RP: Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces. J. Nonlinear Convex Anal. 2010, 11(3):475–489.MathSciNetMATH Hussain N, Khan AR, Agarwal RP: Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces. J. Nonlinear Convex Anal. 2010, 11(3):475–489.MathSciNetMATH
41.
Zurück zum Zitat Parvaneh V, Roshan JR, Radenović S: Existence of tripled coincidence point in ordered b -metric spaces and application to a system of integral equations. Fixed Point Theory Appl. 2013., 2013: Article ID 130 Parvaneh V, Roshan JR, Radenović S: Existence of tripled coincidence point in ordered b -metric spaces and application to a system of integral equations. Fixed Point Theory Appl. 2013., 2013: Article ID 130
Metadaten
Titel
Fixed point and coupled fixed point theorems on b-metric-like spaces
verfasst von
Mohammed Ali Alghamdi
Nawab Hussain
Peyman Salimi
Publikationsdatum
01.12.2013
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2013
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2013-402

Weitere Artikel der Ausgabe 1/2013

Journal of Inequalities and Applications 1/2013 Zur Ausgabe

Premium Partner