Skip to main content
Erschienen in: Optical Memory and Neural Networks 4/2021

01.10.2021

Using Machine Learning Methods to Predict the Magnitude and the Direction of Mask Fragments Displacement in Optical Proximity Correction (OPC)

verfasst von: P. E. Tryasoguzov, A. V. Kuzovkov, I. M. Karandashev, G. S. Teplov

Erschienen in: Optical Memory and Neural Networks | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper studies the effectiveness of machine learning methods in computational photolithography. The first task is to determine the direction of displacement of the mask contour fragment. The second task is to determine the amount of displacement of the mask contour fragment. The machine learning models were trained on the data generated with Calibre WORKbench CAD in the form of radiation intensity vectors around the center of the segment. Comparisons were made between linear regression, random forest, gradient boosting, and feedforward convolutional neural network models. The most accurate results were demonstrated by the random forest model. With its help, it is possible to achieve an absolute error of 2 nm and an accuracy of displacement’s direction prediction of 97.9%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Otto, O.W. et al., Automated optical proximity correction: a rules-based approach, Optical/Laser Microlithography VII, Int. Society for Optics and Photonics, 1994, vol. 2197, pp. 278–293. Otto, O.W. et al., Automated optical proximity correction: a rules-based approach, Optical/Laser Microlithography VII, Int. Society for Optics and Photonics, 1994, vol. 2197, pp. 278–293.
2.
Zurück zum Zitat Li, J. et al., Model-based optical proximity correction including effects of photoresist processes, Optical Microlithography X, Int. Society for Optics and Photonics, 1997, vol. 3051, pp. 643–651. Li, J. et al., Model-based optical proximity correction including effects of photoresist processes, Optical Microlithography X, Int. Society for Optics and Photonics, 1997, vol. 3051, pp. 643–651.
3.
Zurück zum Zitat Kolobov, A.V., Ivanov, V.V., Kuzovkov, A.V., and Arilin R.A., OPC model development for 65 nm technology node, Electron. Eng., Ser. 3: Microelectronics, 2016, no. 4 (164), pp. 4–9. Kolobov, A.V., Ivanov, V.V., Kuzovkov, A.V., and Arilin R.A., OPC model development for 65 nm technology node, Electron. Eng., Ser. 3: Microelectronics, 2016, no. 4 (164), pp. 4–9.
4.
Zurück zum Zitat Cummings, K.D., Frye, R.C., and Rietman, E.A., Using a neural network to proximity correct patterns written with a Cambridge electron beam microfabricator 10.5 lithography system, Appl. Phys. Lett., 1990, vol. 57, no. 14, pp. 1431–1433.CrossRef Cummings, K.D., Frye, R.C., and Rietman, E.A., Using a neural network to proximity correct patterns written with a Cambridge electron beam microfabricator 10.5 lithography system, Appl. Phys. Lett., 1990, vol. 57, no. 14, pp. 1431–1433.CrossRef
5.
Zurück zum Zitat Zach, F.X., Neural-network-based approach to resist modeling and opc, Optical Microlithography XVII, Int. Society for Optics and Photonics, 2004, vol. 5377, pp. 670–679. Zach, F.X., Neural-network-based approach to resist modeling and opc, Optical Microlithography XVII, Int. Society for Optics and Photonics, 2004, vol. 5377, pp. 670–679.
6.
Zurück zum Zitat Huang, W.C. et al., Intelligent model-based OPC, Optical Microlithography XIX, Int. Society for Optics and Photonics, 2006, vol. 6154, p. 615436. Huang, W.C. et al., Intelligent model-based OPC, Optical Microlithography XIX, Int. Society for Optics and Photonics, 2006, vol. 6154, p. 615436.
7.
Zurück zum Zitat Matsunawa, T. et al., A new lithography hotspot detection framework based on AdaBoost classifier and simplified feature extraction, Design-Process-Technology Co-optimization for Manufacturability IX, Int. Society for Optics and Photonics, 2015, vol. 9427, p. 94270S. Matsunawa, T. et al., A new lithography hotspot detection framework based on AdaBoost classifier and simplified feature extraction, Design-Process-Technology Co-optimization for Manufacturability IX, Int. Society for Optics and Photonics, 2015, vol. 9427, p. 94270S.
8.
Zurück zum Zitat Yang, H. et al., Layout hotspot detection with feature tensor generation and deep biased learning, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2018, vol. 38, no. 6, pp. 1175–1187.CrossRef Yang, H. et al., Layout hotspot detection with feature tensor generation and deep biased learning, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2018, vol. 38, no. 6, pp. 1175–1187.CrossRef
9.
Zurück zum Zitat Yang, H. et al., Lithography hotspot detection: From shallow to deep learning, 2017 30th IEEE Int. System-on-Chip Conference (SOCC), IEEE, 2017, pp. 233–238. Yang, H. et al., Lithography hotspot detection: From shallow to deep learning, 2017 30th IEEE Int. System-on-Chip Conference (SOCC), IEEE, 2017, pp. 233–238.
10.
Zurück zum Zitat Xu, X. et al., A machine learning based framework for sub-resolution assist feature generation, Proc. of the 2016 on International Symposium on Physical Design, 2016, pp. 161–168. Xu, X. et al., A machine learning based framework for sub-resolution assist feature generation, Proc. of the 2016 on International Symposium on Physical Design, 2016, pp. 161–168.
11.
Zurück zum Zitat Xu, X. et al., Subresolution assist feature generation with supervised data learning, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2017, vol. 37, no. 6, pp. 1225–1236.CrossRef Xu, X. et al., Subresolution assist feature generation with supervised data learning, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2017, vol. 37, no. 6, pp. 1225–1236.CrossRef
12.
Zurück zum Zitat Shim, S., Choi, S., and Shin, Y., Machine learning (ML)-based lithography optimizations, 2016 IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), IEEE, 2016, pp. 530–533. Shim, S., Choi, S., and Shin, Y., Machine learning (ML)-based lithography optimizations, 2016 IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), IEEE, 2016, pp. 530–533.
13.
Zurück zum Zitat Shim, S., Choi, S., and Shin, Y., Machine learning-based 3d resist model, Optical Microlithography XXX, Int. Society for Optics and Photonics, 2017, vol. 10147, pp. 101471D. Shim, S., Choi, S., and Shin, Y., Machine learning-based 3d resist model, Optical Microlithography XXX, Int. Society for Optics and Photonics, 2017, vol. 10147, pp. 101471D.
14.
Zurück zum Zitat Watanabe, Y. et al., Accurate lithography simulation model based on convolutional neural networks, Photomask Japan 2017: XXIV Symp. on Photomask and Next-Generation Lithography Mask Technology, Int. Society for Optics and Photonics, 2017, vol. 10454, pp. 104540I. Watanabe, Y. et al., Accurate lithography simulation model based on convolutional neural networks, Photomask Japan 2017: XXIV Symp. on Photomask and Next-Generation Lithography Mask Technology, Int. Society for Optics and Photonics, 2017, vol. 10454, pp. 104540I.
15.
Zurück zum Zitat Lin, Y. et al., Data efficient lithography modeling with residual neural networks and transfer learning, Proc. of the 2018 Int. Symp. on Physical Design, 2018, pp. 82–89. Lin, Y. et al., Data efficient lithography modeling with residual neural networks and transfer learning, Proc. of the 2018 Int. Symp. on Physical Design, 2018, pp. 82–89.
16.
Zurück zum Zitat Yu, B. et al., Machine learning and pattern matching in physical design, 20th Asia and South Pacific Design Automation Conf., IEEE, 2015, pp. 286–293. Yu, B. et al., Machine learning and pattern matching in physical design, 20th Asia and South Pacific Design Automation Conf., IEEE, 2015, pp. 286–293.
17.
Zurück zum Zitat Jia, N. and Lam, E.Y., Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis, J. Opt., 2010, vol. 12, no. 4, pp. 045601.CrossRef Jia, N. and Lam, E.Y., Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis, J. Opt., 2010, vol. 12, no. 4, pp. 045601.CrossRef
18.
Zurück zum Zitat Luo, K. et al., SVM based layout retargeting for fast and regularized inverse lithography, J. Zhejiang Univ., Sci., C, 2014, vol. 15, no. 5, pp. 390–400. Luo, K. et al., SVM based layout retargeting for fast and regularized inverse lithography, J. Zhejiang Univ., Sci., C, 2014, vol. 15, no. 5, pp. 390–400.
19.
Zurück zum Zitat Yang, H. et al., GAN-OPC: Mask optimization with lithography-guided generative adversarial nets, Proc. of the 55th Annual Design Automation Conf., 2018, pp. 1–6. Yang, H. et al., GAN-OPC: Mask optimization with lithography-guided generative adversarial nets, Proc. of the 55th Annual Design Automation Conf., 2018, pp. 1–6.
20.
Zurück zum Zitat Ma, X. et al., Fast pixel-based optical proximity correction based on nonparametric kernel regression, J. Micro/Nanolithogr., MEMS, MOEMS, 2014, vol. 13, no. 4, p. 043 007.CrossRef Ma, X. et al., Fast pixel-based optical proximity correction based on nonparametric kernel regression, J. Micro/Nanolithogr., MEMS, MOEMS, 2014, vol. 13, no. 4, p. 043 007.CrossRef
21.
Zurück zum Zitat Gu, A. and Zakhor, A., Optical proximity correction with linear regression, IEEE Trans. Semicond. Manuf. 2008, vol. 21, no. 2, pp. 263–271.CrossRef Gu, A. and Zakhor, A., Optical proximity correction with linear regression, IEEE Trans. Semicond. Manuf. 2008, vol. 21, no. 2, pp. 263–271.CrossRef
22.
Zurück zum Zitat Li, Y., Yu, S.M., and Li, Y.L., Intelligent optical proximity correction using genetic algorithm with model-and rule-based approaches, Comput. Mater. Sci., 2009, vol. 45, no. 1, pp. 65–76.CrossRef Li, Y., Yu, S.M., and Li, Y.L., Intelligent optical proximity correction using genetic algorithm with model-and rule-based approaches, Comput. Mater. Sci., 2009, vol. 45, no. 1, pp. 65–76.CrossRef
23.
Zurück zum Zitat Luo, R., Optical proximity correction using a multilayer perceptron neural network, J. Opt., 2013, vol. 15, no. 7, p. 075708.CrossRef Luo, R., Optical proximity correction using a multilayer perceptron neural network, J. Opt., 2013, vol. 15, no. 7, p. 075708.CrossRef
24.
Zurück zum Zitat Choi, S., Shim, S., and Shin, Y., Machine learning (ML)-guided OPC using basis functions of polar Fourier transform, Optical Microlithography XXIX, Int. Society for Optics and Photonics, 2016, vol. 9780, p. 97800H. Choi, S., Shim, S., and Shin, Y., Machine learning (ML)-guided OPC using basis functions of polar Fourier transform, Optical Microlithography XXIX, Int. Society for Optics and Photonics, 2016, vol. 9780, p. 97800H.
25.
Zurück zum Zitat Matsunawa, T., Yu, B., and Pan, D.Z., Optical proximity correction with hierarchical bayes model, Optical Microlithography XXVIII, Int. Society for Optics and Photonics, 2015, vol. 9426, p. 94260X. Matsunawa, T., Yu, B., and Pan, D.Z., Optical proximity correction with hierarchical bayes model, Optical Microlithography XXVIII, Int. Society for Optics and Photonics, 2015, vol. 9426, p. 94260X.
26.
Zurück zum Zitat Cho, J., Cho, G., and Shin, Y., Optimization of machine learning guided optical proximity correction, 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2018, pp. 921–924. Cho, J., Cho, G., and Shin, Y., Optimization of machine learning guided optical proximity correction, 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2018, pp. 921–924.
27.
Zurück zum Zitat Kwon, Y., Song, Y., and Shin, Y., Optical proximity correction using bidirectional recurrent neural network (BRNN), Design-Process-Technology Co-optimization for Manufacturability XIII, Int. Society for Optics and Photonics, 2019, vol. 10962, p. 109620D. Kwon, Y., Song, Y., and Shin, Y., Optical proximity correction using bidirectional recurrent neural network (BRNN), Design-Process-Technology Co-optimization for Manufacturability XIII, Int. Society for Optics and Photonics, 2019, vol. 10962, p. 109620D.
Metadaten
Titel
Using Machine Learning Methods to Predict the Magnitude and the Direction of Mask Fragments Displacement in Optical Proximity Correction (OPC)
verfasst von
P. E. Tryasoguzov
A. V. Kuzovkov
I. M. Karandashev
G. S. Teplov
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe 4/2021
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X21040056

Weitere Artikel der Ausgabe 4/2021

Optical Memory and Neural Networks 4/2021 Zur Ausgabe

Premium Partner