Skip to main content
Erschienen in: Optical Memory and Neural Networks 2/2022

01.06.2022

Survey of Computational Modeling of the Functional Parts of the Brain

verfasst von: I. A. Smirnitskaya

Erschienen in: Optical Memory and Neural Networks | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A review of connectionist models of the nervous system is presented. First, the information about the main elements of the models and principles of their functioning, such as the distributed nature of input signals representation, the property of associativity and others are given. Since the nervous system is a hierarchical structure, its models reflect different levels of its functioning from cellular to cross-structural. The examples of models of different levels are analyzed, from single neurons to functional parts, such as basal ganglia, cerebellum, hippocampus, etc. It is shown that models built from universal basic elements, with intrinsic organization made under anatomical information, reproduce the basic neurophysiological data about the relationship of animal’s behavior and neural activity of respective part of the brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McCulloch, W. and Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 1943, vol. 5, pp. 115–133.MathSciNetMATHCrossRef McCulloch, W. and Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 1943, vol. 5, pp. 115–133.MathSciNetMATHCrossRef
2.
Zurück zum Zitat Burkitt, A.N., A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 2006, vol. 95, no. 1, pp. 1–19.MathSciNetMATHCrossRef Burkitt, A.N., A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 2006, vol. 95, no. 1, pp. 1–19.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Hodgkin, A. and Huxley, A., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, vol. 117, pp. 500–544.CrossRef Hodgkin, A. and Huxley, A., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, vol. 117, pp. 500–544.CrossRef
4.
Zurück zum Zitat Izhikevich, E.M., Simple model of spiking neurons, IEEE Trans. Neural Networks, 2003, vol. 14, pp. 1569–1572.CrossRef Izhikevich, E.M., Simple model of spiking neurons, IEEE Trans. Neural Networks, 2003, vol. 14, pp. 1569–1572.CrossRef
5.
Zurück zum Zitat An, L., Tang, Y., Wang, Q., Pei, Q., Wei, R., Duan, H., and Liu, J.K., Coding capacity of Purkinje cells with different schemes of morphological reduction, Front. Comput. Neurosci., 2019, vol. 13, p. 29.CrossRef An, L., Tang, Y., Wang, Q., Pei, Q., Wei, R., Duan, H., and Liu, J.K., Coding capacity of Purkinje cells with different schemes of morphological reduction, Front. Comput. Neurosci., 2019, vol. 13, p. 29.CrossRef
6.
Zurück zum Zitat Hebb, D.O., The Organization of Behavior: A Neuropsychological Theory, Wiley, 1949. Hebb, D.O., The Organization of Behavior: A Neuropsychological Theory, Wiley, 1949.
8.
Zurück zum Zitat Izhikevich, E.M., Solving the distal reward problem through linkage of STDP and dopamine signaling, Cereb. Cortex, 2007, vol. 17, pp. 2443–2452.CrossRef Izhikevich, E.M., Solving the distal reward problem through linkage of STDP and dopamine signaling, Cereb. Cortex, 2007, vol. 17, pp. 2443–2452.CrossRef
9.
Zurück zum Zitat Bittner, K.C., Milstein, A.D., Grienberger, C., Romani, S., and Magee, J.C., Behavioral time scale synaptic plasticity underlies CA1 place fields, Science, 2017, vol. 357, pp. 1033–1036.CrossRef Bittner, K.C., Milstein, A.D., Grienberger, C., Romani, S., and Magee, J.C., Behavioral time scale synaptic plasticity underlies CA1 place fields, Science, 2017, vol. 357, pp. 1033–1036.CrossRef
10.
Zurück zum Zitat Shindou, T., Shindou, M., Watanabe, S., and Wickens, J., A silenteligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum, Eur. J. Neurosci., 2019, vol. 49, pp. 726–736.CrossRef Shindou, T., Shindou, M., Watanabe, S., and Wickens, J., A silenteligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum, Eur. J. Neurosci., 2019, vol. 49, pp. 726–736.CrossRef
11.
Zurück zum Zitat Kohonen, T., Associative Memory. A System-Theoretical Approach, Berlin–Heidelberg–New York: Springer-Verlag, 1978.MATH Kohonen, T., Associative Memory. A System-Theoretical Approach, Berlin–Heidelberg–New York: Springer-Verlag, 1978.MATH
12.
Zurück zum Zitat Kohonen, T., Self-Organizing Maps, Berlin–New York: Springer-Verlag, 1989/1997/2001. Kohonen, T., Self-Organizing Maps, Berlin–New York: Springer-Verlag, 1989/1997/2001.
13.
Zurück zum Zitat Frolov, A.A. and Muraviev, I.P., Neural Models of Associative Memory, M.: Nauka, 1987, (in Russian). Frolov, A.A. and Muraviev, I.P., Neural Models of Associative Memory, M.: Nauka, 1987, (in Russian).
14.
Zurück zum Zitat Rosenblatt, F., The Perceptron: A probabilistic model for information storage and organization in the brain, Cornell aeronautical laboratory, Psychol. Rev., 1958, vol. 65, no. 6, pp. 386–408.CrossRef Rosenblatt, F., The Perceptron: A probabilistic model for information storage and organization in the brain, Cornell aeronautical laboratory, Psychol. Rev., 1958, vol. 65, no. 6, pp. 386–408.CrossRef
15.
Zurück zum Zitat Marr, D., A theory of cerebellar cortex, J. Physiol., 1969, vol. 202, pp. 437–470.CrossRef Marr, D., A theory of cerebellar cortex, J. Physiol., 1969, vol. 202, pp. 437–470.CrossRef
16.
Zurück zum Zitat Dunin-Barkovsky, V.L. and Smirnitskaya, I.A., Interaction of theory and experiment in the analysis of neural memory circuits, in Results of Science and Technology. Spin Glasses and Neural Networks, Part 2, M.: VINITI, 1990 (in Russian). Dunin-Barkovsky, V.L. and Smirnitskaya, I.A., Interaction of theory and experiment in the analysis of neural memory circuits, in Results of Science and Technology. Spin Glasses and Neural Networks, Part 2, M.: VINITI, 1990 (in Russian).
17.
Zurück zum Zitat Marr, D., Simple memory: A theory for archicortex, Philos. Trans. R. Soc., B, 1971, vol. 262, pp. 23–81. Marr, D., Simple memory: A theory for archicortex, Philos. Trans. R. Soc., B, 1971, vol. 262, pp. 23–81.
18.
Zurück zum Zitat Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities, PNAS, 1982, vol. 79, no. 8, pp. 2554–2558.MathSciNetMATHCrossRef Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities, PNAS, 1982, vol. 79, no. 8, pp. 2554–2558.MathSciNetMATHCrossRef
19.
Zurück zum Zitat Litinskii, L., Parametrical neural networks and some other similar architectures, OM & NN, 2006, vol. 15, no. 1, pp. 11–19. Litinskii, L., Parametrical neural networks and some other similar architectures, OM & NN, 2006, vol. 15, no. 1, pp. 11–19.
20.
Zurück zum Zitat Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, 2nd ed., Cambridge, MA, USA: MIT Press, 2018.MATH Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, 2nd ed., Cambridge, MA, USA: MIT Press, 2018.MATH
21.
Zurück zum Zitat Skinner, B.F., The Behavior of Organisms: An Experimental Analysis, 1938. Skinner, B.F., The Behavior of Organisms: An Experimental Analysis, 1938.
23.
Zurück zum Zitat Balleine, B.W., Daw, N.D., and O’Doherty, J.P., Multiple forms of value learning and the function of dopamine, in Neuroeconomics: Decision Making and the Brain, Glimcher, P.W., Camerer, C.F., Poldrack, R.A., and Fehr, E., Eds., New York: Academic, 2008. Balleine, B.W., Daw, N.D., and O’Doherty, J.P., Multiple forms of value learning and the function of dopamine, in Neuroeconomics: Decision Making and the Brain, Glimcher, P.W., Camerer, C.F., Poldrack, R.A., and Fehr, E., Eds., New York: Academic, 2008.
24.
Zurück zum Zitat Schultz, W., Predictive reward signal of dopamine neurons, J. Neurophysiol., 1998, vol. 80, pp. 1–27.CrossRef Schultz, W., Predictive reward signal of dopamine neurons, J. Neurophysiol., 1998, vol. 80, pp. 1–27.CrossRef
25.
Zurück zum Zitat Alexander, G.E., DeLong, M.R., and Strick, P.L., Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci., 1986, vol. 9, pp. 357–381.CrossRef Alexander, G.E., DeLong, M.R., and Strick, P.L., Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci., 1986, vol. 9, pp. 357–381.CrossRef
26.
Zurück zum Zitat Sil'kis, I.G., A possible mechanism for the dopamine-evoked synergistic disinhibition of thalamic neurons via the “direct” and “indirect” pathways in the basal ganglia, Neurosci. Behav. Physiol., 2002, vol. 32, no. 3, pp. 205–212.CrossRef Sil'kis, I.G., A possible mechanism for the dopamine-evoked synergistic disinhibition of thalamic neurons via the “direct” and “indirect” pathways in the basal ganglia, Neurosci. Behav. Physiol., 2002, vol. 32, no. 3, pp. 205–212.CrossRef
27.
Zurück zum Zitat Berkinblit, M.B. and Dunin-Barkowski, W.L., Analytical description of impulse propagation sequence in one-dimensional excitable media, Biofizika, 1969, vol. 14, no. 2, pp. 324–327. Berkinblit, M.B. and Dunin-Barkowski, W.L., Analytical description of impulse propagation sequence in one-dimensional excitable media, Biofizika, 1969, vol. 14, no. 2, pp. 324–327.
28.
Zurück zum Zitat Mainen, Z.F. and Sejnowski, T.J., Influence of dendritic structure on firing pattern in model neocortical neurons, Nature, 1996, vol. 382, pp. 363–366.CrossRef Mainen, Z.F. and Sejnowski, T.J., Influence of dendritic structure on firing pattern in model neocortical neurons, Nature, 1996, vol. 382, pp. 363–366.CrossRef
29.
Zurück zum Zitat Hodgkin, A.L., The local changes associated with repetitive action in a non-medullated axon, J. Physiol. (London), 1948, pp. 165–181. Hodgkin, A.L., The local changes associated with repetitive action in a non-medullated axon, J. Physiol. (London), 1948, pp. 165–181.
30.
Zurück zum Zitat Prescott, S.A., Ratté, S., De Koninck, Y., and Sejnowski, T.J., Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons, J. Neurosci., 2006, vol. 26, no. 36, pp. 9084–9097.CrossRef Prescott, S.A., Ratté, S., De Koninck, Y., and Sejnowski, T.J., Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons, J. Neurosci., 2006, vol. 26, no. 36, pp. 9084–9097.CrossRef
31.
Zurück zum Zitat Morris, C. and Lecar, H., Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 1981, vol. 35, pp. 193–213.CrossRef Morris, C. and Lecar, H., Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 1981, vol. 35, pp. 193–213.CrossRef
32.
Zurück zum Zitat Rinzel, J. and Ermentrout, G.B., Analysis of neural excitability and oscillations, in Methods in Neuronal Modeling: from Ions to Networks, Koch, C. and Segev, I., Eds., Cambridge, MA: MIT Press, 1998, pp. 251–291. Rinzel, J. and Ermentrout, G.B., Analysis of neural excitability and oscillations, in Methods in Neuronal Modeling: from Ions to Networks, Koch, C. and Segev, I., Eds., Cambridge, MA: MIT Press, 1998, pp. 251–291.
33.
Zurück zum Zitat Prescott, S.A. and Sejnowski, T.J., Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms, J. Neurosci., 2008, vol. 28, no. 50, pp. 13649–13656.CrossRef Prescott, S.A. and Sejnowski, T.J., Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms, J. Neurosci., 2008, vol. 28, no. 50, pp. 13649–13656.CrossRef
34.
Zurück zum Zitat Stiefel, K.M. and Gutkin, B.S., The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons, J. Comput. Neurosci., 2008, vol. 26, pp. 289–301.MathSciNetCrossRef Stiefel, K.M. and Gutkin, B.S., The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons, J. Comput. Neurosci., 2008, vol. 26, pp. 289–301.MathSciNetCrossRef
35.
Zurück zum Zitat Roach, J.P., Eniwaye, B., Booth, V., Sander, L.M., and Zochowski, M.R., Acetylcholine mediates dynamic switching between information coding schemes in neuronal networks, Front. Syst. Neurosci., 2019, vol. 13, p. 64.CrossRef Roach, J.P., Eniwaye, B., Booth, V., Sander, L.M., and Zochowski, M.R., Acetylcholine mediates dynamic switching between information coding schemes in neuronal networks, Front. Syst. Neurosci., 2019, vol. 13, p. 64.CrossRef
36.
Zurück zum Zitat Mink, J.W., The basal ganglia: Focused selection and inhibition of competing motor programs, Prog. Neurobiol., 1996, vol. 50, no. 4, pp. 381–425.CrossRef Mink, J.W., The basal ganglia: Focused selection and inhibition of competing motor programs, Prog. Neurobiol., 1996, vol. 50, no. 4, pp. 381–425.CrossRef
37.
Zurück zum Zitat Mink, J.W. and Thach, W.T., Basal ganglia intrinsic circuits and their role in behavior, Curr. Opin. Neurobiol., 1993, vol. 3, no. 6, pp. 950–957.CrossRef Mink, J.W. and Thach, W.T., Basal ganglia intrinsic circuits and their role in behavior, Curr. Opin. Neurobiol., 1993, vol. 3, no. 6, pp. 950–957.CrossRef
38.
Zurück zum Zitat Albin, R.L., Young, A.B., and Penney, J.B., The functional anatomy of basal ganglia disorders, Trends Neurosci., 1989, vol. 12, no. 10, pp. 366–375.CrossRef Albin, R.L., Young, A.B., and Penney, J.B., The functional anatomy of basal ganglia disorders, Trends Neurosci., 1989, vol. 12, no. 10, pp. 366–375.CrossRef
39.
Zurück zum Zitat Parent, A. and Hazrati, L.-N., Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry, Brain Res. Rev., 1995, vol. 20, no. 1, pp. 128–154.CrossRef Parent, A. and Hazrati, L.-N., Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry, Brain Res. Rev., 1995, vol. 20, no. 1, pp. 128–154.CrossRef
41.
Zurück zum Zitat Gurney, K., Prescott, T.J., and Redgrave, P., A computational model of action selection in the basal ganglia. IIA new functional anatomy, Biol. Cybern., 2001, vol. 84, no. 6, pp. 401–410.MATHCrossRef Gurney, K., Prescott, T.J., and Redgrave, P., A computational model of action selection in the basal ganglia. IIA new functional anatomy, Biol. Cybern., 2001, vol. 84, no. 6, pp. 401–410.MATHCrossRef
42.
Zurück zum Zitat Gurney, K., Prescott, T.J., and Redgrave, P., A computational model of action selection in the basal ganglia. I. Analysis and simulation of behavior, Biol. Cybern., 2001, vol. 84, no. 6, pp. 411–423.MATHCrossRef Gurney, K., Prescott, T.J., and Redgrave, P., A computational model of action selection in the basal ganglia. I. Analysis and simulation of behavior, Biol. Cybern., 2001, vol. 84, no. 6, pp. 411–423.MATHCrossRef
43.
Zurück zum Zitat Frank, M.J., Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism, J. Cognit. Neurosci., 2005, vol. 17, no. 1, pp. 51–72.CrossRef Frank, M.J., Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism, J. Cognit. Neurosci., 2005, vol. 17, no. 1, pp. 51–72.CrossRef
44.
Zurück zum Zitat O’Reilly, R.C., Six principles for biologically based computational models of cortical cognition, Trends Cognit. Sci., 1998, vol. 2, no. 11, pp. 455–462.CrossRef O’Reilly, R.C., Six principles for biologically based computational models of cortical cognition, Trends Cognit. Sci., 1998, vol. 2, no. 11, pp. 455–462.CrossRef
45.
Zurück zum Zitat Durstewitz, D., Seamans, J.K., and Sejnowski, T.J., Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex, J. Neurophysiol., 2000, vol. 83, pp. 1733–1750.CrossRef Durstewitz, D., Seamans, J.K., and Sejnowski, T.J., Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex, J. Neurophysiol., 2000, vol. 83, pp. 1733–1750.CrossRef
46.
Zurück zum Zitat Maiorov, V.I., A model of the neural mechanism of instrumentalization of movements caused by stimulation of the motor cortex, J.VND, 2021, vol. 71, no. 2, pp. 202–212. Maiorov, V.I., A model of the neural mechanism of instrumentalization of movements caused by stimulation of the motor cortex, J.VND, 2021, vol. 71, no. 2, pp. 202–212.
47.
Zurück zum Zitat Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A., and Uchida, N., Whole-brain mapping of direct inputs to midbrain dopamine neurons, Neuron, 2012, vol. 74, no. 5, pp. 858–873.CrossRef Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A., and Uchida, N., Whole-brain mapping of direct inputs to midbrain dopamine neurons, Neuron, 2012, vol. 74, no. 5, pp. 858–873.CrossRef
49.
Zurück zum Zitat Dayan, P. and Abbott, L.F., Theoretical Neuroscience. Computational and Mathematical Modelling of Neural Systems, Cambridge, MA: MIT Press, 2001.MATH Dayan, P. and Abbott, L.F., Theoretical Neuroscience. Computational and Mathematical Modelling of Neural Systems, Cambridge, MA: MIT Press, 2001.MATH
50.
Zurück zum Zitat Humphries, M.D., Stewart, R.D., and Gurney, K.N., A physiologically plausible model of action selection and oscillatory activity in the basal ganglia, J. Neurosci., 2006, vol. 26, no. 50, pp. 12921–12942.CrossRef Humphries, M.D., Stewart, R.D., and Gurney, K.N., A physiologically plausible model of action selection and oscillatory activity in the basal ganglia, J. Neurosci., 2006, vol. 26, no. 50, pp. 12921–12942.CrossRef
54.
Zurück zum Zitat Badre, D., Kayser, A.S., and D’Esposito, M., Frontal cortex and the discovery of abstract action rules, Neuron, 2010, vol. 66, pp. 315–326.CrossRef Badre, D., Kayser, A.S., and D’Esposito, M., Frontal cortex and the discovery of abstract action rules, Neuron, 2010, vol. 66, pp. 315–326.CrossRef
55.
Zurück zum Zitat Hartwigsen, G., Neef, N.E., Julia, A., Camilleri, J.A., Margulies, D.S., and Eickhoff, S.B., Functional segregation of the right inferior frontal gyrus: Evidence from coactivation-based parcellation, Cereb. Cortex, 2019, vol. 29, pp. 1532–1546.CrossRef Hartwigsen, G., Neef, N.E., Julia, A., Camilleri, J.A., Margulies, D.S., and Eickhoff, S.B., Functional segregation of the right inferior frontal gyrus: Evidence from coactivation-based parcellation, Cereb. Cortex, 2019, vol. 29, pp. 1532–1546.CrossRef
56.
Zurück zum Zitat Dunin-Barkowski, W.L., Analysis of output of all Purkinje cells controlled by one climbing fiber cell, Neurocomputing, 2002, vol. 44–46, pp. 391–400.MATHCrossRef Dunin-Barkowski, W.L., Analysis of output of all Purkinje cells controlled by one climbing fiber cell, Neurocomputing, 2002, vol. 44–46, pp. 391–400.MATHCrossRef
58.
Zurück zum Zitat Lisberger, S.G. and Sejnowski, T.J., Motor learning in a recurrent network model based on the vestibulo-ocular reflex, Nature, 1992, vol. 360, pp. 159–161.CrossRef Lisberger, S.G. and Sejnowski, T.J., Motor learning in a recurrent network model based on the vestibulo-ocular reflex, Nature, 1992, vol. 360, pp. 159–161.CrossRef
60.
Zurück zum Zitat Hoshi, E., Tremblay, L., Feger, J., Carras, P.L., and Strick, P.L., The cerebellum communicates with the basal ganglia, Nat. Neurosci., 2005, vol. 8, pp. 1491–1493.CrossRef Hoshi, E., Tremblay, L., Feger, J., Carras, P.L., and Strick, P.L., The cerebellum communicates with the basal ganglia, Nat. Neurosci., 2005, vol. 8, pp. 1491–1493.CrossRef
61.
Zurück zum Zitat Bostan, A.C., Dum, R.P., and Strick, P.L., The basal ganglia communicate with the cerebellum, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 8452–8456.CrossRef Bostan, A.C., Dum, R.P., and Strick, P.L., The basal ganglia communicate with the cerebellum, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 8452–8456.CrossRef
62.
Zurück zum Zitat Wagner, M.J. and Lu, L., Neocortex-cerebellum circuits for cognitive processing, Trends Neurosci., 2020, vol. 43, no. 1, pp. 42–54.CrossRef Wagner, M.J. and Lu, L., Neocortex-cerebellum circuits for cognitive processing, Trends Neurosci., 2020, vol. 43, no. 1, pp. 42–54.CrossRef
63.
Zurück zum Zitat Caligiore, D., Mannella, F., Arbib, M.A., and Baldassarre, G., Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome, PLoS Comput. Biol., 2017, vol. 13, no. 3. Caligiore, D., Mannella, F., Arbib, M.A., and Baldassarre, G., Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome, PLoS Comput. Biol., 2017, vol. 13, no. 3.
64.
Zurück zum Zitat McCairn, K.W., Iriki, A., and Isoda, M., Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition, J. Neurosci., 2013, vol. 33, pp. 697–708.CrossRef McCairn, K.W., Iriki, A., and Isoda, M., Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition, J. Neurosci., 2013, vol. 33, pp. 697–708.CrossRef
65.
Zurück zum Zitat Scoville, W.B. and Milner, B., Loss of recent memory after bilateral hippocampal lesions, J. Neurol., Neurosurg. Psychiatry, 1957, vol. 20, pp. 11–21.CrossRef Scoville, W.B. and Milner, B., Loss of recent memory after bilateral hippocampal lesions, J. Neurol., Neurosurg. Psychiatry, 1957, vol. 20, pp. 11–21.CrossRef
67.
Zurück zum Zitat Vinogradova, O.S., Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information, Hippocampus, 2001, vol. 11, no. 5, pp. 578–598.CrossRef Vinogradova, O.S., Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information, Hippocampus, 2001, vol. 11, no. 5, pp. 578–598.CrossRef
69.
Zurück zum Zitat Treves, A. and Rolls, E.T., Computational analysis of the role of the hippocampus in memory, Hippocampus, 1994, vol. 4, pp. 374–391.CrossRef Treves, A. and Rolls, E.T., Computational analysis of the role of the hippocampus in memory, Hippocampus, 1994, vol. 4, pp. 374–391.CrossRef
70.
Zurück zum Zitat Bliss, T.V. and Lomo, T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 1973, vol. 232, no. 2, pp. 331–356.CrossRef Bliss, T.V. and Lomo, T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 1973, vol. 232, no. 2, pp. 331–356.CrossRef
72.
Zurück zum Zitat O’Keefe, J., Place units in the hippocampus of the freely moving rat, Exp. Neurol., 1976, vol. 51, pp. 78–109.CrossRef O’Keefe, J., Place units in the hippocampus of the freely moving rat, Exp. Neurol., 1976, vol. 51, pp. 78–109.CrossRef
74.
Zurück zum Zitat Taube, J.S., The head direction signal: origins and sensory-motor integration, Annu. Rev. Neurosci., 2007, vol. 30, pp. 181–207.MathSciNetCrossRef Taube, J.S., The head direction signal: origins and sensory-motor integration, Annu. Rev. Neurosci., 2007, vol. 30, pp. 181–207.MathSciNetCrossRef
75.
Zurück zum Zitat Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., and Moser, E.I., Conjunctive representation of position, direction, and velocity in entorhinal cortex, Science, 2006, vol. 312, pp.758–762.CrossRef Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., and Moser, E.I., Conjunctive representation of position, direction, and velocity in entorhinal cortex, Science, 2006, vol. 312, pp.758–762.CrossRef
76.
Zurück zum Zitat Fuhs, M.C. and Touretzky, D.S., A spin glass model of path integration in rat medial entorhinal cortex, J. Neurosci., 2006, vol. 26, pp. 4266–4276.CrossRef Fuhs, M.C. and Touretzky, D.S., A spin glass model of path integration in rat medial entorhinal cortex, J. Neurosci., 2006, vol. 26, pp. 4266–4276.CrossRef
79.
Zurück zum Zitat O’Keefe, J. and Burgess, N., Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells, Hippocampus, 2005, vol. 15, pp. 853–866.CrossRef O’Keefe, J. and Burgess, N., Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells, Hippocampus, 2005, vol. 15, pp. 853–866.CrossRef
80.
Zurück zum Zitat McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., and Moser, M.B., Path integration and the neural basis of the “cognitive map”, Nat. Rev. Neurosci., 2006, vol. 7, pp. 663–678.CrossRef McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., and Moser, M.B., Path integration and the neural basis of the “cognitive map”, Nat. Rev. Neurosci., 2006, vol. 7, pp. 663–678.CrossRef
Metadaten
Titel
Survey of Computational Modeling of the Functional Parts of the Brain
verfasst von
I. A. Smirnitskaya
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe 2/2022
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X22020096

Weitere Artikel der Ausgabe 2/2022

Optical Memory and Neural Networks 2/2022 Zur Ausgabe

Premium Partner