Skip to main content

2018 | OriginalPaper | Buchkapitel

12. Liquid Metal Enabled Skin Electronics

verfasst von : Jing Liu, Liting Yi

Erschienen in: Liquid Metal Biomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the basic principle of the conformal epidermal printed electronics based on the liquid metal to achieve the immediate contact between skin surface and electrode. The remarkable features of the liquid metal skin electronics, such as high conformability, good conductivity, better signal stability and fine biocompatibility were discussed. A series of typical applications on disease therapy or health care were given as examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Guo C, Yu Y, Liu J (2014) Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. J Mater Chem B 2:5739–5745CrossRef Guo C, Yu Y, Liu J (2014) Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. J Mater Chem B 2:5739–5745CrossRef
2.
Zurück zum Zitat Kim DH, Lu NS, Ma R et al (2011) Epidermal electronics. Science 333:838–843CrossRef Kim DH, Lu NS, Ma R et al (2011) Epidermal electronics. Science 333:838–843CrossRef
3.
Zurück zum Zitat Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826CrossRef Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826CrossRef
4.
Zurück zum Zitat Maheshwari V, Saraf RF (2006) High-resolution thin film device to sense texture by touch. Science 312:1501–1504CrossRef Maheshwari V, Saraf RF (2006) High-resolution thin film device to sense texture by touch. Science 312:1501–1504CrossRef
5.
Zurück zum Zitat Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832CrossRef Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832CrossRef
6.
Zurück zum Zitat Schwartz G, Tee BC, Mei J, Appleton AL, Kim DH, Bao ZN (1859) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 2013:4 Schwartz G, Tee BC, Mei J, Appleton AL, Kim DH, Bao ZN (1859) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 2013:4
7.
Zurück zum Zitat Webb RC, Bonifas AP, Behnaz A, Zhang YH, Yu KJ, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944CrossRef Webb RC, Bonifas AP, Behnaz A, Zhang YH, Yu KJ, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944CrossRef
8.
Zurück zum Zitat Lin P, Yan F (2012) Organic thin film transistors for chemical and biological sensing. Adv Mater 24:34–51CrossRef Lin P, Yan F (2012) Organic thin film transistors for chemical and biological sensing. Adv Mater 24:34–51CrossRef
9.
Zurück zum Zitat Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. IEEE Sens J 1(1):41–51CrossRef Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. IEEE Sens J 1(1):41–51CrossRef
10.
Zurück zum Zitat Jeong GS, Baek DH, Jung HC et al (2012) Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat Commun 3:977CrossRef Jeong GS, Baek DH, Jung HC et al (2012) Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat Commun 3:977CrossRef
11.
Zurück zum Zitat Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911CrossRef Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911CrossRef
12.
Zurück zum Zitat Yoshioka Y, Jabbour GE (2006) Desktop inkjet printer as a tool to print conducting polymers. Synth Met 156:779–783CrossRef Yoshioka Y, Jabbour GE (2006) Desktop inkjet printer as a tool to print conducting polymers. Synth Met 156:779–783CrossRef
13.
Zurück zum Zitat Yu RM, Lin D, Pan CF, Niu SM, Liu HF, Wang ZL (2012) Effect on the transport properties of GaN nanobelts for active flexible electronics. Adv Mater 24:3532–3537CrossRef Yu RM, Lin D, Pan CF, Niu SM, Liu HF, Wang ZL (2012) Effect on the transport properties of GaN nanobelts for active flexible electronics. Adv Mater 24:3532–3537CrossRef
14.
Zurück zum Zitat Gao YX, Li HY, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771-6CrossRef Gao YX, Li HY, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771-6CrossRef
15.
Zurück zum Zitat Zheng Y, He ZZ, Gao YX, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1–1786-7 Zheng Y, He ZZ, Gao YX, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1–1786-7
16.
Zurück zum Zitat Cheng S, Wu ZG (2010) Microfluidic stretchable RF electronics. Lab Chip 10:3227–3244CrossRef Cheng S, Wu ZG (2010) Microfluidic stretchable RF electronics. Lab Chip 10:3227–3244CrossRef
17.
Zurück zum Zitat Kong TF, Peng WK, Luong TD, Nguyen NT, Han J (2012) Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab Chip 12:287–294CrossRef Kong TF, Peng WK, Luong TD, Nguyen NT, Han J (2012) Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab Chip 12:287–294CrossRef
18.
Zurück zum Zitat Zhang B, Dong Q, Korman CE, Li ZY, Zaghloul ME (1098) Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Sci Rep 2013:3 Zhang B, Dong Q, Korman CE, Li ZY, Zaghloul ME (1098) Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Sci Rep 2013:3
19.
Zurück zum Zitat Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771–16CrossRef Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771–16CrossRef
20.
Zurück zum Zitat Zheng Y, Zhang Q, Liu J (2013) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3:112117-1–112117-6CrossRef Zheng Y, Zhang Q, Liu J (2013) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3:112117-1–112117-6CrossRef
21.
Zurück zum Zitat Jin C., Zhang J., Li X. K., Yang X. Y., Li J. J., Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442-1-7 Jin C., Zhang J., Li X. K., Yang X. Y., Li J. J., Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442-1-7
22.
Zurück zum Zitat Kaydanova T, Miedaner A, Perkins JD, Curtis C, Alleman JL, Ginley DS (2007) Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits. Thin Solid Films 515:820–3824CrossRef Kaydanova T, Miedaner A, Perkins JD, Curtis C, Alleman JL, Ginley DS (2007) Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits. Thin Solid Films 515:820–3824CrossRef
23.
Zurück zum Zitat Hansen TS, West K, Hassager O, Larsen NB (2007) Direct fast patterning of conductive polymers using agarose stamping. Adv Mater 19:3261CrossRef Hansen TS, West K, Hassager O, Larsen NB (2007) Direct fast patterning of conductive polymers using agarose stamping. Adv Mater 19:3261CrossRef
24.
Zurück zum Zitat Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Func Mater 20:28–35CrossRef Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Func Mater 20:28–35CrossRef
25.
Zurück zum Zitat Tait JG, Worfolk BJ, Maloney SA, Hauger TC, Elias AL, Buriak JM, Harris KD (2013) Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol Energy Mater Sol Cells 110:98–106CrossRef Tait JG, Worfolk BJ, Maloney SA, Hauger TC, Elias AL, Buriak JM, Harris KD (2013) Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol Energy Mater Sol Cells 110:98–106CrossRef
26.
Zurück zum Zitat Akhavan VA, Goodfellow BW, Panthani MG, Reid DK, Hellebusch DJ, Adachi T, Korgel BA (2010) Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy Environ Sci 3:1600–1606CrossRef Akhavan VA, Goodfellow BW, Panthani MG, Reid DK, Hellebusch DJ, Adachi T, Korgel BA (2010) Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy Environ Sci 3:1600–1606CrossRef
27.
Zurück zum Zitat Dong TY, Chen WT, Wang CW et al (2009) One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films. Phys Chem Chem Phys 11:6269–6275CrossRef Dong TY, Chen WT, Wang CW et al (2009) One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films. Phys Chem Chem Phys 11:6269–6275CrossRef
28.
Zurück zum Zitat Zhang Q, Gao YX, Liu J (2013) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 116:1091–1097CrossRef Zhang Q, Gao YX, Liu J (2013) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 116:1091–1097CrossRef
29.
Zurück zum Zitat Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal ink (DREAM Ink): a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340CrossRef Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal ink (DREAM Ink): a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340CrossRef
30.
Zurück zum Zitat Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21:151–173CrossRef Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21:151–173CrossRef
31.
Zurück zum Zitat Thaker NV (1999) Biopotentials and electrophysiology measurement. In: Webster JG (ed) The measurement, instrumentation and sensors handbook. CRC Press, Boca Raton, pp 74-1–74-19 Thaker NV (1999) Biopotentials and electrophysiology measurement. In: Webster JG (ed) The measurement, instrumentation and sensors handbook. CRC Press, Boca Raton, pp 74-1–74-19
32.
Zurück zum Zitat Chi YM, Wang YT, Wang Y et al (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20:228–235CrossRef Chi YM, Wang YT, Wang Y et al (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20:228–235CrossRef
33.
Zurück zum Zitat Chi YM, Cauwenberghs G (2010) Wireless non-contact EEG/ECG electrodes for body sensor networks. In: International conference on body sensor networks (BSN). IEEE Press, Singapore, pp 297–301 Chi YM, Cauwenberghs G (2010) Wireless non-contact EEG/ECG electrodes for body sensor networks. In: International conference on body sensor networks (BSN). IEEE Press, Singapore, pp 297–301
34.
Zurück zum Zitat Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. In: Sixth international workshop on wearable and implantable body sensor networks (BSN 2009). IEEE Press, Berkeley, pp 246–250 Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. In: Sixth international workshop on wearable and implantable body sensor networks (BSN 2009). IEEE Press, Berkeley, pp 246–250
35.
Zurück zum Zitat Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771-16CrossRef Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8(3):e58771-1–e58771-16CrossRef
36.
Zurück zum Zitat Matula RA (1979) Electrical resistivity of copper, gold, palladium and silver. J Phys Chem Ref Data 8:1147–1298CrossRef Matula RA (1979) Electrical resistivity of copper, gold, palladium and silver. J Phys Chem Ref Data 8:1147–1298CrossRef
37.
Zurück zum Zitat Dean JA (1999) Lange’s handbook of chemistry. McGraw-Hill Inc., New York, p 1291 Dean JA (1999) Lange’s handbook of chemistry. McGraw-Hill Inc., New York, p 1291
38.
Zurück zum Zitat Ivanoff CS, Ivanoff AE, Hottel TL (2012) Gallium poisoning: a rare case report. Food Chem Toxicol 50:212–215CrossRef Ivanoff CS, Ivanoff AE, Hottel TL (2012) Gallium poisoning: a rare case report. Food Chem Toxicol 50:212–215CrossRef
39.
Zurück zum Zitat Cadwallader LC (2003) Gallium safety in the laboratory. Energy Facility Contractors Group (EFCOG) Safety Analysis Working Group (SAWG) 2003 Annual Meeting, INEEL/CON-03-00078 Preprint Cadwallader LC (2003) Gallium safety in the laboratory. Energy Facility Contractors Group (EFCOG) Safety Analysis Working Group (SAWG) 2003 Annual Meeting, INEEL/CON-03-00078 Preprint
40.
Zurück zum Zitat Dunne SM, Abraham R (2000) Dental post-operative sensitivity associated with a gallium-based restorative material. Br Dent J 189:310–313 Dunne SM, Abraham R (2000) Dental post-operative sensitivity associated with a gallium-based restorative material. Br Dent J 189:310–313
41.
Zurück zum Zitat Chen WC, Tsai KD, Chen CH et al (2012) Role of Gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU. Intern Emerg Med 7:53–58CrossRef Chen WC, Tsai KD, Chen CH et al (2012) Role of Gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU. Intern Emerg Med 7:53–58CrossRef
42.
Zurück zum Zitat Hagemeister FB, Fesus SM, Lamki LM, Haynie TP (1990) Role of the gallium scan in Hodgkin’s disease. Cancer 65:1090–1096CrossRef Hagemeister FB, Fesus SM, Lamki LM, Haynie TP (1990) Role of the gallium scan in Hodgkin’s disease. Cancer 65:1090–1096CrossRef
43.
Zurück zum Zitat Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108CrossRef Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108CrossRef
44.
Zurück zum Zitat Cherepenin VA, Karpov AY, Korjenevsky AV et al (2002) Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans Med Imaging 21:602–607CrossRef Cherepenin VA, Karpov AY, Korjenevsky AV et al (2002) Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans Med Imaging 21:602–607CrossRef
45.
Zurück zum Zitat Cherepenin VA, Karpov AY, Korjenevsky AV et al (2001) A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiol Meas 22:9–18CrossRef Cherepenin VA, Karpov AY, Korjenevsky AV et al (2001) A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiol Meas 22:9–18CrossRef
46.
Zurück zum Zitat Seligman PA, Moran PL, Schleicher RB, Crawford ED (1992) Treatment with gallium nitrate: evidence for interference with iron metabolism in vivo. Am J Hematol 41:232–240CrossRef Seligman PA, Moran PL, Schleicher RB, Crawford ED (1992) Treatment with gallium nitrate: evidence for interference with iron metabolism in vivo. Am J Hematol 41:232–240CrossRef
47.
Zurück zum Zitat Martens RJ, Harrington JR, Cohen ND et al (2006) Gallium therapy: a novel metal-based antimicrobial strategy for potential control of Rhodococcus equi foal pneumonia. AAEP Proc 52:219–221 Martens RJ, Harrington JR, Cohen ND et al (2006) Gallium therapy: a novel metal-based antimicrobial strategy for potential control of Rhodococcus equi foal pneumonia. AAEP Proc 52:219–221
48.
Zurück zum Zitat Wang X, Zhang Y, Guo R, Wang H, Yuan B, Liu J (2018) Conformable liquid metal printed epidermal electronics for smart physiological monitoring and simulation treatment. J Micromech Microeng 28:034003CrossRef Wang X, Zhang Y, Guo R, Wang H, Yuan B, Liu J (2018) Conformable liquid metal printed epidermal electronics for smart physiological monitoring and simulation treatment. J Micromech Microeng 28:034003CrossRef
49.
Zurück zum Zitat Shimizu H (2007) Shimizu’s textbook of dermatology, 1st edn. (Chap. 1). Nakakyama Shoten, Hokkaido University Press, Sapporo City, Japan Shimizu H (2007) Shimizu’s textbook of dermatology, 1st edn. (Chap. 1). Nakakyama Shoten, Hokkaido University Press, Sapporo City, Japan
50.
Zurück zum Zitat Kletenik YB, Aleksandrova TP (1997) Submicron regeneration of the working surface of indicator electrodes: regeneration of metal electrodes. J Anal Chem 52(7):680–682 Kletenik YB, Aleksandrova TP (1997) Submicron regeneration of the working surface of indicator electrodes: regeneration of metal electrodes. J Anal Chem 52(7):680–682
51.
Zurück zum Zitat Lehew G, Nicolelis MAL (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals. In: Methods for neural ensemble recordings, 2nd edn., pp 361–371 Lehew G, Nicolelis MAL (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals. In: Methods for neural ensemble recordings, 2nd edn., pp 361–371
52.
Zurück zum Zitat Lee H, Kim HB, Im TG, Jeong JI, Ahn S (2003) Characterization of platinum electrode using unbalanced magnetic field sputter for implantable biomedical applications. Plasma Science. In: The 30th International Conference on IEEE Conference Record-Abstracts. ICOPS 2003. IEEE. doi: 10.1109 (2003) Lee H, Kim HB, Im TG, Jeong JI, Ahn S (2003) Characterization of platinum electrode using unbalanced magnetic field sputter for implantable biomedical applications. Plasma Science. In: The 30th International Conference on IEEE Conference Record-Abstracts. ICOPS 2003. IEEE. doi: 10.1109 (2003)
53.
Zurück zum Zitat Wu F, Wang L, Zou J, Huang X, Yuan X (2012) Clinical features, mutation of the GNAS1 and pathogenesis of progressive osseous heteroplasia. Chin J Pediatr 50(1):10–14 Wu F, Wang L, Zou J, Huang X, Yuan X (2012) Clinical features, mutation of the GNAS1 and pathogenesis of progressive osseous heteroplasia. Chin J Pediatr 50(1):10–14
54.
Zurück zum Zitat Cömert A, Honkala M, Hyttinen J (2013) Effect of pressure and padding on motion artifact of textile electrodes. Biomed Eng Online 12:26CrossRef Cömert A, Honkala M, Hyttinen J (2013) Effect of pressure and padding on motion artifact of textile electrodes. Biomed Eng Online 12:26CrossRef
55.
Zurück zum Zitat He L, Lin D, Wang Y, Xiao Y, Che J (2011) Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf B 87:273–279CrossRef He L, Lin D, Wang Y, Xiao Y, Che J (2011) Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf B 87:273–279CrossRef
56.
Zurück zum Zitat Bera SC, Chattopadhyay S, Chakraborty B (2004) An experimental analysis of the non-linear behaviour of a bio-electrode polarisation impedance with excitation frequency. Measurement 35:363–370CrossRef Bera SC, Chattopadhyay S, Chakraborty B (2004) An experimental analysis of the non-linear behaviour of a bio-electrode polarisation impedance with excitation frequency. Measurement 35:363–370CrossRef
57.
Zurück zum Zitat Plam U, Keeser D, Schiller C, Fintescu Z, Nitsche M, Reisinger E, Padberg F (2008) Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimul 1:386–387CrossRef Plam U, Keeser D, Schiller C, Fintescu Z, Nitsche M, Reisinger E, Padberg F (2008) Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimul 1:386–387CrossRef
58.
Zurück zum Zitat Ahadian S, Ramón-Azcón J, Ostrovidov S et al (2013) A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomed Microdevice 15:109–115CrossRef Ahadian S, Ramón-Azcón J, Ostrovidov S et al (2013) A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomed Microdevice 15:109–115CrossRef
59.
Zurück zum Zitat Esibov A, Chapman FW, Melnick SB, Sullivan JL, Walcott GP (2015) Minor variations in electrode pad placement impact defibrillation success. Prehospital Emerg Care 20:292–298CrossRef Esibov A, Chapman FW, Melnick SB, Sullivan JL, Walcott GP (2015) Minor variations in electrode pad placement impact defibrillation success. Prehospital Emerg Care 20:292–298CrossRef
60.
Zurück zum Zitat Killingsworth CR, Melnick SB, Litovsky SH, Ideker RE, Walcott GP (2013) Evaluation of acute cardiac and chest wall damage after shocks with a subcutaneous implantable cardioverter defibrillator in Swine. Pacing Clin Electrophysiol 36(10):1265–1272 Killingsworth CR, Melnick SB, Litovsky SH, Ideker RE, Walcott GP (2013) Evaluation of acute cardiac and chest wall damage after shocks with a subcutaneous implantable cardioverter defibrillator in Swine. Pacing Clin Electrophysiol 36(10):1265–1272
61.
Zurück zum Zitat Martins AC, Moreira A, Machado AV, Vaz F, Fonseca C, Nóbrega JM (2015) Development of polymer wicks for the fabrication of bio-medical sensors. Mater Sci Eng C 49:356–363CrossRef Martins AC, Moreira A, Machado AV, Vaz F, Fonseca C, Nóbrega JM (2015) Development of polymer wicks for the fabrication of bio-medical sensors. Mater Sci Eng C 49:356–363CrossRef
62.
Zurück zum Zitat Xu S, Dai M, Xu C, Chen C, Tang M, Shi X, Dong X (2011) Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography. Ann Biomed Eng 39:2059–2067CrossRef Xu S, Dai M, Xu C, Chen C, Tang M, Shi X, Dong X (2011) Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography. Ann Biomed Eng 39:2059–2067CrossRef
63.
Zurück zum Zitat Abellán-Llobregat A, Jeerapan I, Bandodkar A, Wang J, Morallón E (2017) A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens Bioelectron 91:885–891CrossRef Abellán-Llobregat A, Jeerapan I, Bandodkar A, Wang J, Morallón E (2017) A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens Bioelectron 91:885–891CrossRef
64.
Zurück zum Zitat Mishra RK, Hubble LJ, Martín A, Kumar R, Wang J (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens 2:553–561CrossRef Mishra RK, Hubble LJ, Martín A, Kumar R, Wang J (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens 2:553–561CrossRef
65.
Zurück zum Zitat Zhang Y, Webb RC, Luo H et al (2016) Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv Healthcare Mater 5:119–127CrossRef Zhang Y, Webb RC, Luo H et al (2016) Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv Healthcare Mater 5:119–127CrossRef
66.
Zurück zum Zitat Webb RC, Ma Y, Krishnan S, Li Y, Yoon S, Guo X, Feng X, Rogers JA (2015) Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv 1(9):e1500701CrossRef Webb RC, Ma Y, Krishnan S, Li Y, Yoon S, Guo X, Feng X, Rogers JA (2015) Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv 1(9):e1500701CrossRef
67.
Zurück zum Zitat Gao L, Zhang Y, Malyarchuk V, Jia L, Jang KI, Webb RC, Rogers JA (2014) Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 5. doi:10.1038 Gao L, Zhang Y, Malyarchuk V, Jia L, Jang KI, Webb RC, Rogers JA (2014) Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 5. doi:10.1038
68.
Zurück zum Zitat Huang X, Liu Y, Chen K, Shin WJ, Lu CJ, Kong GW, Rogers JA (2014) Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10:3083–3090CrossRef Huang X, Liu Y, Chen K, Shin WJ, Lu CJ, Kong GW, Rogers JA (2014) Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10:3083–3090CrossRef
69.
Zurück zum Zitat Neuman MR (1997) Biopotential electrodes. In: Webster JG (ed) Medical instrumentation: application and design, 3rd edn. Wiley, New York, pp 183–232 Neuman MR (1997) Biopotential electrodes. In: Webster JG (ed) Medical instrumentation: application and design, 3rd edn. Wiley, New York, pp 183–232
70.
Zurück zum Zitat Kim J, Salvatore GA, Araki H, Chiarelli AM, Xie Z, Banks A, Rogers JA (2016) Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2(8):e1600418CrossRef Kim J, Salvatore GA, Araki H, Chiarelli AM, Xie Z, Banks A, Rogers JA (2016) Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2(8):e1600418CrossRef
72.
Zurück zum Zitat Li J, Guo C, Wang Z, Gao K, Shi X, Liu J (2016) Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin. Clin Transl Med 5(1):1–7CrossRef Li J, Guo C, Wang Z, Gao K, Shi X, Liu J (2016) Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin. Clin Transl Med 5(1):1–7CrossRef
73.
Zurück zum Zitat Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202CrossRef Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202CrossRef
74.
Zurück zum Zitat Schneiderman RS, Shmueli E, Kirson ED, Palti Y (2010) TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters. BMC Cancer 10:229CrossRef Schneiderman RS, Shmueli E, Kirson ED, Palti Y (2010) TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters. BMC Cancer 10:229CrossRef
75.
Zurück zum Zitat Kirson ED, Schneiderman RS, Dbalý V et al (2009) Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Med Phys 9:1CrossRef Kirson ED, Schneiderman RS, Dbalý V et al (2009) Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Med Phys 9:1CrossRef
76.
Zurück zum Zitat Kirson ED, Gurvich Z, Schneiderman R et al (2004) Disruption of cancer cell replication by alternating electric fields. Can Res 64:3288–3295CrossRef Kirson ED, Gurvich Z, Schneiderman R et al (2004) Disruption of cancer cell replication by alternating electric fields. Can Res 64:3288–3295CrossRef
77.
Zurück zum Zitat Kirson ED, Giladi M, Gurvich Z et al (2009) Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metas 26:633–640CrossRef Kirson ED, Giladi M, Gurvich Z et al (2009) Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metas 26:633–640CrossRef
78.
Zurück zum Zitat Guo C, Yi L, Yu Y, Liu J (1070) Electrically induced reorganization phenomena of liquid metal film printed on biological skin. Appl Phys A 2016:122 Guo C, Yi L, Yu Y, Liu J (1070) Electrically induced reorganization phenomena of liquid metal film printed on biological skin. Appl Phys A 2016:122
Metadaten
Titel
Liquid Metal Enabled Skin Electronics
verfasst von
Jing Liu
Liting Yi
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5607-9_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.