Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2021

18.02.2021

Loading Direction-Dependent Mechanical Properties of Columnar Polycrystal: A Molecular Dynamics Study

verfasst von: Hua Zhu, Juan Chen, Huiqin Chen, Liang Fang, Kun Sun

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, mechanical properties and plastic deformation behaviors of columnar polycrystal are examined by compression tests using molecular dynamics simulation. The results show that anisotropic mechanical properties occur to the fcc FeCrNi samples with different inclined angles between the orientation of columnar grains and loading direction. The yield stress and flow stress of the α = 0° sample are the highest, while the values of α = 45° sample are the lowest among the tested samples. The reasons for these differences derive from the geometric constraint of grain boundaries (GBs) and the available slip systems of different grains. The GBs serve as obstacles where extended dislocations are incorporated rather than dislocation pile-ups at GBs. For the α = 0° sample, the GBs bending toward the radius direction coupled with less partial dislocation motion and twinning compensates the compression strain. The strain-assisted GBs migration along loading direction extensively takes place in α = 90° sample, whereas the numerous partial dislocation activity and GBs gliding occur in samples with the angle close to 45°. This results from the higher Schmid factors of slip systems of columnar grains within these samples and long mean free sliding path for GBs gliding. Besides, the influence of radius size is probed, exhibiting a constant Young’s modulus, but slightly different plastic deformation characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, S. Van Dyck, Irradiation-Induced Precipitates in A Neutron Irradiated 304 Stainless Steel Studied by three-Dimensional Atom Probe, J. Nucl. Mater. 2011, 418(1-3), p 62–68. T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, S. Van Dyck, Irradiation-Induced Precipitates in A Neutron Irradiated 304 Stainless Steel Studied by three-Dimensional Atom Probe, J. Nucl. Mater. 2011, 418(1-3), p 62–68.
2.
Zurück zum Zitat D. Terentyev and A. Bakaev, Interaction of A Screw Dislocation with Frank Loops in Fe-10Ni-20Cr Alloy, J. Nucl. Mater., 2013, 442(1-3), p 208–217.CrossRef D. Terentyev and A. Bakaev, Interaction of A Screw Dislocation with Frank Loops in Fe-10Ni-20Cr Alloy, J. Nucl. Mater., 2013, 442(1-3), p 208–217.CrossRef
3.
Zurück zum Zitat G. Lesoult, Macrosegregation in Steel Strands and Ingots: Characterisation, Formation and Consequences, Mater. Sci. Eng. A, 2005, 413-414(1), p 19–29.CrossRef G. Lesoult, Macrosegregation in Steel Strands and Ingots: Characterisation, Formation and Consequences, Mater. Sci. Eng. A, 2005, 413-414(1), p 19–29.CrossRef
4.
Zurück zum Zitat E.O. Hall, The deformation and ageing of mild steel. 3. discussion of results, Proceedings of the Physical Society of London Section B, 1951, 64(381), p 747–753. E.O. Hall, The deformation and ageing of mild steel. 3. discussion of results, Proceedings of the Physical Society of London Section B, 1951, 64(381), p 747–753.
5.
Zurück zum Zitat N.J. Petch, The Cleavage Strength of Polycrystals, Journal of the Iron and Steel Institute, 1953, 174(1), p 25–28. N.J. Petch, The Cleavage Strength of Polycrystals, Journal of the Iron and Steel Institute, 1953, 174(1), p 25–28.
6.
Zurück zum Zitat G. Dehm, B.N. Jaya, R. Raghavan and C. Kirchlechner, Overview on Micro- and Nanomechanical Testing: New Insights in Interface Plasticity and Fracture at Small Length Scales, Acta Mater., 2018, 142(1), p 248–282.CrossRef G. Dehm, B.N. Jaya, R. Raghavan and C. Kirchlechner, Overview on Micro- and Nanomechanical Testing: New Insights in Interface Plasticity and Fracture at Small Length Scales, Acta Mater., 2018, 142(1), p 248–282.CrossRef
7.
Zurück zum Zitat A.T. Jennings and J.R. Greer, Tensile Deformation of Electroplated Copper Nanopillars, Philos. Mag., 2011, 91(7-9), p 1108–1120.CrossRef A.T. Jennings and J.R. Greer, Tensile Deformation of Electroplated Copper Nanopillars, Philos. Mag., 2011, 91(7-9), p 1108–1120.CrossRef
8.
Zurück zum Zitat S.H. Oh, M. Legros, D. Kiener, P. Gruber and G. Dehm, In situ TEM Straining of Single Crystal Au Films on Polyimide: Change of Deformation Mechanisms at the Nanoscale, Acta Mater., 2007, 55(16), p 5558–5571.CrossRef S.H. Oh, M. Legros, D. Kiener, P. Gruber and G. Dehm, In situ TEM Straining of Single Crystal Au Films on Polyimide: Change of Deformation Mechanisms at the Nanoscale, Acta Mater., 2007, 55(16), p 5558–5571.CrossRef
9.
Zurück zum Zitat A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, On the Validity of the Hall–Petch Relationship in Nanocrystalline Materials, Scr. Metall. Mater., 1989, 23(1), p 1679–1683.CrossRef A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, On the Validity of the Hall–Petch Relationship in Nanocrystalline Materials, Scr. Metall. Mater., 1989, 23(1), p 1679–1683.CrossRef
10.
Zurück zum Zitat H. Conrad and J. Narayan, On the Grain Size Softening in Nanocrystalline Materials, Scripta Mater., 2000, 42(11), p 1025–1030.CrossRef H. Conrad and J. Narayan, On the Grain Size Softening in Nanocrystalline Materials, Scripta Mater., 2000, 42(11), p 1025–1030.CrossRef
11.
Zurück zum Zitat D. Wolf, V. Yamakov, S.R. Phillpot and A.K. Mukherjee, Deformation Mechanism and Inverse Hall–Petch Behavior in Nanocrystalline Materials, Zeitschrift Fur Metallkunde, 2003, 94(10), p 1091–1097.CrossRef D. Wolf, V. Yamakov, S.R. Phillpot and A.K. Mukherjee, Deformation Mechanism and Inverse Hall–Petch Behavior in Nanocrystalline Materials, Zeitschrift Fur Metallkunde, 2003, 94(10), p 1091–1097.CrossRef
12.
Zurück zum Zitat K. Lu and M.L. Sui, An explanation to the Abnormal Hall–Petch Relation in Nanocrystalline Materials, Scr. Metall. Mater., 1993, 28(1), p 1465–1470.CrossRef K. Lu and M.L. Sui, An explanation to the Abnormal Hall–Petch Relation in Nanocrystalline Materials, Scr. Metall. Mater., 1993, 28(1), p 1465–1470.CrossRef
13.
Zurück zum Zitat H.S. Kim, Y. Estrin and M.B. Bush, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., 2000, 48(2), p 493–504.CrossRef H.S. Kim, Y. Estrin and M.B. Bush, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., 2000, 48(2), p 493–504.CrossRef
14.
Zurück zum Zitat D.A. Konstantinidis and E.C. Aifantis, On the “anomalous” Hardness of Nanocrystalline Materials, Nanostruct. Mater., 1998, 10(7), p 1111–1118.CrossRef D.A. Konstantinidis and E.C. Aifantis, On the “anomalous” Hardness of Nanocrystalline Materials, Nanostruct. Mater., 1998, 10(7), p 1111–1118.CrossRef
15.
Zurück zum Zitat Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nature communications, 2014, 5(1), p 3580. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nature communications, 2014, 5(1), p 3580.
16.
Zurück zum Zitat L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian and K. Lu, Ultrahigh Strength and High Electrical Conductivity In Copper, Science, 2004, 304(1), p 422–426.CrossRef L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian and K. Lu, Ultrahigh Strength and High Electrical Conductivity In Copper, Science, 2004, 304(1), p 422–426.CrossRef
17.
Zurück zum Zitat K. Lu, L. Lu and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, Science, 2009, 324(1), p 349–352.CrossRef K. Lu, L. Lu and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, Science, 2009, 324(1), p 349–352.CrossRef
18.
Zurück zum Zitat M. Dao, L. Lu, Y.F. Shen and S. Suresh, Strength, Strain-Rate Sensitivity and Ductility of Copper with Nanoscale Twins, Acta Mater., 2006, 54(20), p 5421–5432.CrossRef M. Dao, L. Lu, Y.F. Shen and S. Suresh, Strength, Strain-Rate Sensitivity and Ductility of Copper with Nanoscale Twins, Acta Mater., 2006, 54(20), p 5421–5432.CrossRef
19.
Zurück zum Zitat S. Fu, J. Liu and Z. Wang, Strain Hardening Behavior of Ni-Carbonyl Chemical Vapor Deposited (CVD) Material with Bimodal Grain Structures: Ultrafine (UF) Grains and Large Grains with UF/Nano Twins, Mater. Sci. Eng., A, 2019, 751(1), p 253–262.CrossRef S. Fu, J. Liu and Z. Wang, Strain Hardening Behavior of Ni-Carbonyl Chemical Vapor Deposited (CVD) Material with Bimodal Grain Structures: Ultrafine (UF) Grains and Large Grains with UF/Nano Twins, Mater. Sci. Eng., A, 2019, 751(1), p 253–262.CrossRef
20.
Zurück zum Zitat X. Zhao, C. Lu, A.K. Tieu, L. Zhan, L. Pei and M. Huang, Deformation Mechanisms and Slip-Twin Interactions in Nanotwinned Body-Centered Cubic Iron by Molecular Dynamics Simulations, Comput. Mater. Sci., 2018, 147(1), p 34–48.CrossRef X. Zhao, C. Lu, A.K. Tieu, L. Zhan, L. Pei and M. Huang, Deformation Mechanisms and Slip-Twin Interactions in Nanotwinned Body-Centered Cubic Iron by Molecular Dynamics Simulations, Comput. Mater. Sci., 2018, 147(1), p 34–48.CrossRef
21.
Zurück zum Zitat A. Kunz, S. Pathak, J.R. Greer, Size Effects in Al Nanopillars: Single crystalline vs. bicrystalline. Acta Mater. 2011, 59(11), p 4416–4424. A. Kunz, S. Pathak, J.R. Greer, Size Effects in Al Nanopillars: Single crystalline vs. bicrystalline. Acta Mater. 2011, 59(11), p 4416–4424.
22.
Zurück zum Zitat K.S. Ng and A.H.W. Ngan, Deformation of Micron-Sized Aluminium Bi-crystal pillars, Philos. Mag., 2009, 89(33), p 3013–3026.CrossRef K.S. Ng and A.H.W. Ngan, Deformation of Micron-Sized Aluminium Bi-crystal pillars, Philos. Mag., 2009, 89(33), p 3013–3026.CrossRef
23.
Zurück zum Zitat N. Kheradmand, H. Vehoff and A. Barnoush, An Insight into the Role of the Grain Boundary in Plastic Deformation by Means of a Bicrystalline Pillar Compression Test and Atomistic Simulation, Acta Mater., 2013, 61(19), p 7454–7465.CrossRef N. Kheradmand, H. Vehoff and A. Barnoush, An Insight into the Role of the Grain Boundary in Plastic Deformation by Means of a Bicrystalline Pillar Compression Test and Atomistic Simulation, Acta Mater., 2013, 61(19), p 7454–7465.CrossRef
24.
Zurück zum Zitat P.J. Imrich, C. Kirchlechner, C. Motz and G. Dehm, Differences in Deformation Behavior of Bicrystalline Cu Micropillars Containing a Twin Boundary or a Large-Angle Grain Boundary, Acta Mater., 2014, 73(1), p 240–250.CrossRef P.J. Imrich, C. Kirchlechner, C. Motz and G. Dehm, Differences in Deformation Behavior of Bicrystalline Cu Micropillars Containing a Twin Boundary or a Large-Angle Grain Boundary, Acta Mater., 2014, 73(1), p 240–250.CrossRef
25.
Zurück zum Zitat P.J. Imrich, C. Kirchlechner and G. Dehm, Influence of Inclined Twin Boundaries on the Deformation Behavior of Cu Micropillars, Mater. Sci. Eng. A, 2015, 642(1), p 65–70.CrossRef P.J. Imrich, C. Kirchlechner and G. Dehm, Influence of Inclined Twin Boundaries on the Deformation Behavior of Cu Micropillars, Mater. Sci. Eng. A, 2015, 642(1), p 65–70.CrossRef
26.
Zurück zum Zitat E. lnikov, V. Moskvina, N. Galchenko, Strain Hardening and Fracture Behavior during Tension of Directionally Solidified High-Nitrogen Austenitic Steel, in: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2017, 2017. E. lnikov, V. Moskvina, N. Galchenko, Strain Hardening and Fracture Behavior during Tension of Directionally Solidified High-Nitrogen Austenitic Steel, in: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2017, 2017.
27.
Zurück zum Zitat V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot and H. Gleiter, Length-Scale Effects in the Nucleation of Extended Dislocations in Nanocrystalline Al by Molecular-Dynamics Simulation, Acta Mater., 2001, 49(14), p 2713–2722.CrossRef V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot and H. Gleiter, Length-Scale Effects in the Nucleation of Extended Dislocations in Nanocrystalline Al by Molecular-Dynamics Simulation, Acta Mater., 2001, 49(14), p 2713–2722.CrossRef
28.
Zurück zum Zitat P.M. Derlet and H. Van Swygenhoven, Length Scale effects in the Simulation of Deformation Properties of Nanocrystalline Metals, Scr. Mater., 2002, 47(1), p 719–724.CrossRef P.M. Derlet and H. Van Swygenhoven, Length Scale effects in the Simulation of Deformation Properties of Nanocrystalline Metals, Scr. Mater., 2002, 47(1), p 719–724.CrossRef
29.
Zurück zum Zitat M. Zhang, J. Chen, T. Xu, M. Li, K. Sun and L. Fang, Effect of Grain Boundary Deformation on Mechanical Properties in Nanocrystalline Cu Film Investigated by Using Phase Field and Molecular dynamics simulation methods, J. Appl. Phys., 2020, 127(12), p 125303.CrossRef M. Zhang, J. Chen, T. Xu, M. Li, K. Sun and L. Fang, Effect of Grain Boundary Deformation on Mechanical Properties in Nanocrystalline Cu Film Investigated by Using Phase Field and Molecular dynamics simulation methods, J. Appl. Phys., 2020, 127(12), p 125303.CrossRef
30.
Zurück zum Zitat W. He, F. Li, H. Zhang and H. Chen, The Influence of Loading Paths on Mechanical Behavior and Microstructure of Mn18Cr18N Austenitic Stainless Steel, J. Mater. Eng. Perform., 2020, 29(7), p 4708–4715.CrossRef W. He, F. Li, H. Zhang and H. Chen, The Influence of Loading Paths on Mechanical Behavior and Microstructure of Mn18Cr18N Austenitic Stainless Steel, J. Mater. Eng. Perform., 2020, 29(7), p 4708–4715.CrossRef
31.
Zurück zum Zitat S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.CrossRef S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.CrossRef
32.
Zurück zum Zitat G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé and A. Bakaev, Interatomic Potential to Study Plasticity in Stainless Steels: the FeNiCr Model Alloy, Model. Simul. Mater. Sci. Eng., 2011, 19(8), p 085008.CrossRef G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé and A. Bakaev, Interatomic Potential to Study Plasticity in Stainless Steels: the FeNiCr Model Alloy, Model. Simul. Mater. Sci. Eng., 2011, 19(8), p 085008.CrossRef
33.
Zurück zum Zitat Y. Fan, W. Wang, Z. Hao and C. Zhan, Work Hardening Mechanism Based on Molecular dynamics simulation in Cutting Ni-Fe-Cr Series of Ni-Based Alloy, J. Alloys Comp., 2020, 819(1), p 153331.CrossRef Y. Fan, W. Wang, Z. Hao and C. Zhan, Work Hardening Mechanism Based on Molecular dynamics simulation in Cutting Ni-Fe-Cr Series of Ni-Based Alloy, J. Alloys Comp., 2020, 819(1), p 153331.CrossRef
34.
Zurück zum Zitat C.M. Barr, G.A. Vetterick, K.A. Unocic, K. Hattar, X.-M. Bai and M.L. Taheri, Anisotropic Radiation-Induced Segregation in 316L Austenitic Stainless Steel with Grain Boundary Character, Acta Mater., 2014, 67(1), p 145–155.CrossRef C.M. Barr, G.A. Vetterick, K.A. Unocic, K. Hattar, X.-M. Bai and M.L. Taheri, Anisotropic Radiation-Induced Segregation in 316L Austenitic Stainless Steel with Grain Boundary Character, Acta Mater., 2014, 67(1), p 145–155.CrossRef
35.
Zurück zum Zitat L.K. Béland, A. Tamm, S. Mu, G.D. Samolyuk, Y.N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro and R.E. Stoller, Accurate Classical Short-Range Forces for the Study of Collision Cascades in Fe-Ni-Cr, Comput. Phys. Commun., 2017, 219(1), p 11–19.CrossRef L.K. Béland, A. Tamm, S. Mu, G.D. Samolyuk, Y.N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro and R.E. Stoller, Accurate Classical Short-Range Forces for the Study of Collision Cascades in Fe-Ni-Cr, Comput. Phys. Commun., 2017, 219(1), p 11–19.CrossRef
36.
Zurück zum Zitat J. Han, L. Fang, J. Sun, Y. Han and K. Sun, Length-dependent mechanical properties of gold nanowires, J. Appl. Phys., 2012, 112(11), p 114314.CrossRef J. Han, L. Fang, J. Sun, Y. Han and K. Sun, Length-dependent mechanical properties of gold nanowires, J. Appl. Phys., 2012, 112(11), p 114314.CrossRef
37.
Zurück zum Zitat G. Sainath and B.K. Choudhary, Orientation dependent deformation behaviour of BCC iron nanowires, Comput. Mater. Sci., 2016, 111(1), p 406–415.CrossRef G. Sainath and B.K. Choudhary, Orientation dependent deformation behaviour of BCC iron nanowires, Comput. Mater. Sci., 2016, 111(1), p 406–415.CrossRef
38.
Zurück zum Zitat R. Komanduri, N. Chandrasekaran and L.M. Raff, MD Simulation of Indentation and Scratching of Single Crystal Aluminum, Wear, 2000, 240(1-2), p 113–143.CrossRef R. Komanduri, N. Chandrasekaran and L.M. Raff, MD Simulation of Indentation and Scratching of Single Crystal Aluminum, Wear, 2000, 240(1-2), p 113–143.CrossRef
39.
Zurück zum Zitat D. Mulliah, S.D. Kenny, E. McGee, R. Smith, A. Richter and B. Wolf, ATOMISTIC Modelling of Ploughing Friction in Silver, Iron and Silicon, Nanotechnology, 2006, 17(8), p 1807–1818.CrossRef D. Mulliah, S.D. Kenny, E. McGee, R. Smith, A. Richter and B. Wolf, ATOMISTIC Modelling of Ploughing Friction in Silver, Iron and Silicon, Nanotechnology, 2006, 17(8), p 1807–1818.CrossRef
40.
Zurück zum Zitat T.-H. Fang, W.-J. Chang and C.-I. Weng, Nanoindentation and Nanomachining Characteristics of Gold and Platinum Thin Films, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 430(1-2), p 332–340.CrossRef T.-H. Fang, W.-J. Chang and C.-I. Weng, Nanoindentation and Nanomachining Characteristics of Gold and Platinum Thin Films, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 430(1-2), p 332–340.CrossRef
41.
Zurück zum Zitat L. Fang, K. Sun, J. Shi, X. Zhu, Y. Zhang, J. Chen, J. Sun and J. Han, Movement Patterns of Ellipsoidal Particles with Different Axial Ratios in three-body abrasion of Monocrystalline Copper: A Large Scale Molecular Dynamics Study, RSC Advances, 2017, 7(43), p 26790–26800.CrossRef L. Fang, K. Sun, J. Shi, X. Zhu, Y. Zhang, J. Chen, J. Sun and J. Han, Movement Patterns of Ellipsoidal Particles with Different Axial Ratios in three-body abrasion of Monocrystalline Copper: A Large Scale Molecular Dynamics Study, RSC Advances, 2017, 7(43), p 26790–26800.CrossRef
42.
Zurück zum Zitat J. Shi, J. Chen, L. Fang, K. Sun, J. Sun and J. Han, Atomistic scale Nanoscratching Behavior of Monocrystalline Cu Influenced by Water Film in CMP Process, Appl. Surf. Sci., 2018, 435(1), p 983–992.CrossRef J. Shi, J. Chen, L. Fang, K. Sun, J. Sun and J. Han, Atomistic scale Nanoscratching Behavior of Monocrystalline Cu Influenced by Water Film in CMP Process, Appl. Surf. Sci., 2018, 435(1), p 983–992.CrossRef
43.
Zurück zum Zitat Y. Yi, J. Xing, M. Wan, L. Yu, Y. Lu and Y. Jian, Effect of Cu on Microstructure, Crystallography and Mechanical Properties in Fe-B-C-Cu Alloys, Mater. Sci. Eng., A, 2017, 708(1), p 274–284.CrossRef Y. Yi, J. Xing, M. Wan, L. Yu, Y. Lu and Y. Jian, Effect of Cu on Microstructure, Crystallography and Mechanical Properties in Fe-B-C-Cu Alloys, Mater. Sci. Eng., A, 2017, 708(1), p 274–284.CrossRef
44.
Zurück zum Zitat J. Sun, Z. Yang, H. Liu, J. Han, Y. Wu, X. Zhuo, D. Song, J. Jiang, A. Ma and G. Wu, Tension-Compression Asymmetry of the AZ91 Magnesium Alloy with Multiheterogenous Microstructure, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019, 759(1), p 703–707.CrossRef J. Sun, Z. Yang, H. Liu, J. Han, Y. Wu, X. Zhuo, D. Song, J. Jiang, A. Ma and G. Wu, Tension-Compression Asymmetry of the AZ91 Magnesium Alloy with Multiheterogenous Microstructure, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019, 759(1), p 703–707.CrossRef
45.
Zurück zum Zitat J. Chen, J. Shi, Z. Chen, M. Zhang, W. Peng, L. Fang, K. Sun and J. Han, Mechanical Properties and Deformation Behaviors of Surface-Modified Silicon: A Molecular Dynamics Study, J. Mater. Sci., 2019, 54(4), p 3096–3110.CrossRef J. Chen, J. Shi, Z. Chen, M. Zhang, W. Peng, L. Fang, K. Sun and J. Han, Mechanical Properties and Deformation Behaviors of Surface-Modified Silicon: A Molecular Dynamics Study, J. Mater. Sci., 2019, 54(4), p 3096–3110.CrossRef
46.
Zurück zum Zitat J. Sun, A. Ma, J. Jiang, J. Han and Y. Han, Orientation-Dependent Mechanical Behavior and Phase Transformation of Mono-Crystalline Silicon, J. Appl. Phys., 2016, 119(9), p 095904.CrossRef J. Sun, A. Ma, J. Jiang, J. Han and Y. Han, Orientation-Dependent Mechanical Behavior and Phase Transformation of Mono-Crystalline Silicon, J. Appl. Phys., 2016, 119(9), p 095904.CrossRef
47.
Zurück zum Zitat J. Han, J. Sun, S. Xu, D. Song, H. Liu, Y. Han and L. Fang, Deformation Mechanisms at Multiple Pop-Ins Under Spherical Nanoindentation of (111) Si, Comput. Mater. Sci., 2018, 143(1), p 480–485.CrossRef J. Han, J. Sun, S. Xu, D. Song, H. Liu, Y. Han and L. Fang, Deformation Mechanisms at Multiple Pop-Ins Under Spherical Nanoindentation of (111) Si, Comput. Mater. Sci., 2018, 143(1), p 480–485.CrossRef
48.
Zurück zum Zitat Q. Qin, W. He, L. Xie, J. Deng, X. Zhu and Q. Peng, Nonlinear Diffusion, Bonding, and Mechanics of the Interface Between Austenitic Steel and Iron, Phys. Chem. Chem. Phys., 2019, 21(3), p 1464–1470.CrossRef Q. Qin, W. He, L. Xie, J. Deng, X. Zhu and Q. Peng, Nonlinear Diffusion, Bonding, and Mechanics of the Interface Between Austenitic Steel and Iron, Phys. Chem. Chem. Phys., 2019, 21(3), p 1464–1470.CrossRef
49.
Zurück zum Zitat Z. Lu, L. Xu, T. Chen, L. Tan and H. Xu, Interactions Between Displacement Cascade and Dislocation and Their Influences on Peierls Stress in Fe-20Cr-25Ni Alloys, Comput. Mater. Sci., 2019, 160(1), p 279–286.CrossRef Z. Lu, L. Xu, T. Chen, L. Tan and H. Xu, Interactions Between Displacement Cascade and Dislocation and Their Influences on Peierls Stress in Fe-20Cr-25Ni Alloys, Comput. Mater. Sci., 2019, 160(1), p 279–286.CrossRef
50.
Zurück zum Zitat T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071.CrossRef T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071.CrossRef
51.
Zurück zum Zitat T.S. Byun, N. Hashimoto and K. Farrell, Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels, Acta Mater., 2004, 52(13), p 3889–3899.CrossRef T.S. Byun, N. Hashimoto and K. Farrell, Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels, Acta Mater., 2004, 52(13), p 3889–3899.CrossRef
52.
Zurück zum Zitat A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.CrossRef A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.CrossRef
53.
Zurück zum Zitat M. Zhang, T. Xu, M. Li, K. Sun and L. Fang, Constructing Initial Nanocrystalline Configurations from Phase Field Microstructures Enables Rational Molecular Dynamics Simulation, Comput. Mater. Sci., 2019, 163(1), p 162–166.CrossRef M. Zhang, T. Xu, M. Li, K. Sun and L. Fang, Constructing Initial Nanocrystalline Configurations from Phase Field Microstructures Enables Rational Molecular Dynamics Simulation, Comput. Mater. Sci., 2019, 163(1), p 162–166.CrossRef
54.
Zurück zum Zitat J. Schiotz, T. Vegge, F.D. Di Tolla and K.W. Jacobsen, Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals, Phys. Rev. B, 1999, 60(17), p 11971–11983.CrossRef J. Schiotz, T. Vegge, F.D. Di Tolla and K.W. Jacobsen, Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals, Phys. Rev. B, 1999, 60(17), p 11971–11983.CrossRef
55.
Zurück zum Zitat J. Schiotz, F.D. Di Tolla and K.W. Jacobsen, Softening of Nanocrystalline Metals at Very Small Grain Sizes, Nature, 1998, 391(6667), p 561–563.CrossRef J. Schiotz, F.D. Di Tolla and K.W. Jacobsen, Softening of Nanocrystalline Metals at Very Small Grain Sizes, Nature, 1998, 391(6667), p 561–563.CrossRef
56.
Zurück zum Zitat Y.T. Zhu, Deformation Twinning in Nanocrystalline Metals, J. Mater. Eng. Perform., 2005, 14(4), p 467–472.CrossRef Y.T. Zhu, Deformation Twinning in Nanocrystalline Metals, J. Mater. Eng. Perform., 2005, 14(4), p 467–472.CrossRef
57.
Zurück zum Zitat X.L. Wu and Y.T. Zhu, Inverse Grain-Size Effect on Twinning in Nanocrystalline Ni, Phys. Rev. Lett., 2008, 101(2), p 025503.CrossRef X.L. Wu and Y.T. Zhu, Inverse Grain-Size Effect on Twinning in Nanocrystalline Ni, Phys. Rev. Lett., 2008, 101(2), p 025503.CrossRef
Metadaten
Titel
Loading Direction-Dependent Mechanical Properties of Columnar Polycrystal: A Molecular Dynamics Study
verfasst von
Hua Zhu
Juan Chen
Huiqin Chen
Liang Fang
Kun Sun
Publikationsdatum
18.02.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05480-2

Weitere Artikel der Ausgabe 3/2021

Journal of Materials Engineering and Performance 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.