Skip to main content
Erschienen in: Neural Processing Letters 3/2018

28.08.2017

Local Bifurcation Analysis of a Fractional-Order Dynamic Model of Genetic Regulatory Networks with Delays

verfasst von: Qingshan Sun, Min Xiao, Binbin Tao

Erschienen in: Neural Processing Letters | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a delayed fractional-order gene regulatory network model. Firstly, the sum of delays is chosen as the bifurcation parameter, and the conditions of the existence for Hopf bifurcations are achieved through analyzing its characteristic equation. Secondly, it is shown that the fractional order can be effectively manipulated to control the dynamics of such network, and the stability domain can be changed with different fractional orders. The fractional-order genetic network can generate a Hopf bifurcation (oscillation appears) as the sum of delays passes through some critical values. Therefore, we can achieve some desirable dynamical behaviors by choosing the appropriate fractional order. Finally, numerical simulations are carried out to illustrate the validity of our theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cottone G, Paola MD, Santoro R (2010) A novel exact representation of stationary colored gaussian processes (fractional differential approach). J Phys A Math Theor 43(8):085002MathSciNetCrossRefMATH Cottone G, Paola MD, Santoro R (2010) A novel exact representation of stationary colored gaussian processes (fractional differential approach). J Phys A Math Theor 43(8):085002MathSciNetCrossRefMATH
2.
Zurück zum Zitat Henry B, Wearne S (2002) Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math 62(3):870–887MathSciNetCrossRefMATH Henry B, Wearne S (2002) Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math 62(3):870–887MathSciNetCrossRefMATH
3.
Zurück zum Zitat Engheia N (1997) On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag 39(4):35–46CrossRef Engheia N (1997) On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag 39(4):35–46CrossRef
4.
5.
Zurück zum Zitat Djordjević VD, Jarić Fabry B, Fredberg JJ, Stamenovi D (2003) Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 31(6):692–699CrossRef Djordjević VD, Jarić Fabry B, Fredberg JJ, Stamenovi D (2003) Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 31(6):692–699CrossRef
6.
Zurück zum Zitat Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRef Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRef
7.
Zurück zum Zitat Bar YY, Harmon D, Bivort B (2009) Attractors and democratic dynamics. Science 323(5917):1016–1017CrossRef Bar YY, Harmon D, Bivort B (2009) Attractors and democratic dynamics. Science 323(5917):1016–1017CrossRef
8.
Zurück zum Zitat Hidde DJ (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103CrossRef Hidde DJ (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103CrossRef
9.
Zurück zum Zitat Sun GQ, Wang SL, Ren Q, Jin Z, Wu YP (2015) Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci Rep 5:11246CrossRef Sun GQ, Wang SL, Ren Q, Jin Z, Wu YP (2015) Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci Rep 5:11246CrossRef
10.
Zurück zum Zitat Wang QY, Perc M, Duan ZS, Chen GR (2009) Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19(2):023112CrossRef Wang QY, Perc M, Duan ZS, Chen GR (2009) Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19(2):023112CrossRef
11.
Zurück zum Zitat Verdugo A, Rand R (2008) Hopf bifurcation in a DDE model of gene expression. Commun Nonlinear Sci Numer Simul 13(2):235–242MathSciNetCrossRefMATH Verdugo A, Rand R (2008) Hopf bifurcation in a DDE model of gene expression. Commun Nonlinear Sci Numer Simul 13(2):235–242MathSciNetCrossRefMATH
12.
Zurück zum Zitat Wan AY, Zou XF (2009) Hopf bifurcation analysis for a model of genetic regulatory system with delay. J Math Anal Appl 356(2):464–476MathSciNetCrossRefMATH Wan AY, Zou XF (2009) Hopf bifurcation analysis for a model of genetic regulatory system with delay. J Math Anal Appl 356(2):464–476MathSciNetCrossRefMATH
13.
Zurück zum Zitat Xu CJ, Zhang QM, Wu YS (2016) Bifurcation analysis in a three-neuron artificial neural network model with distributed delays. Neural Process Lett 44(2):343–373CrossRef Xu CJ, Zhang QM, Wu YS (2016) Bifurcation analysis in a three-neuron artificial neural network model with distributed delays. Neural Process Lett 44(2):343–373CrossRef
14.
Zurück zum Zitat Tian XH, Xu R (2016) Hopf bifurcation analysis of a reaction-diffusion neural network with time delay in leakage terms and distributed delays. Neural Process Lett 43(1):173–193CrossRef Tian XH, Xu R (2016) Hopf bifurcation analysis of a reaction-diffusion neural network with time delay in leakage terms and distributed delays. Neural Process Lett 43(1):173–193CrossRef
15.
Zurück zum Zitat Xu CJ, Shao YF, Li PL (2015) Bifurcation behavior for an electronic neural network model with two different delays. Neural Process Lett 42(3):541–561CrossRef Xu CJ, Shao YF, Li PL (2015) Bifurcation behavior for an electronic neural network model with two different delays. Neural Process Lett 42(3):541–561CrossRef
16.
Zurück zum Zitat Abdelouahab MS, Hamri NE, Wang JW (2012) Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn 69(1):275–284MathSciNetCrossRefMATH Abdelouahab MS, Hamri NE, Wang JW (2012) Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn 69(1):275–284MathSciNetCrossRefMATH
17.
Zurück zum Zitat Li X, Wu RC (2014) Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. Nonlinear Dyn 78(1):279–288MathSciNetCrossRefMATH Li X, Wu RC (2014) Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. Nonlinear Dyn 78(1):279–288MathSciNetCrossRefMATH
18.
Zurück zum Zitat Tian JL, Yu YG, Wang H (2014) Stability and bifurcation of two kinds of three-dimensional fractional Lotka–Volterra systems. Math Probl Eng 2014:695871MathSciNet Tian JL, Yu YG, Wang H (2014) Stability and bifurcation of two kinds of three-dimensional fractional Lotka–Volterra systems. Math Probl Eng 2014:695871MathSciNet
19.
Zurück zum Zitat Xiao M, Zheng WX, Jiang GP, Cao JD (2015) Undamped oscillations generated by hopf bifurcations in fractional-order recurrent neural networks with caputo derivative. IEEE Trans Neural Netw Learn Syst 26(12):3201–3214MathSciNetCrossRef Xiao M, Zheng WX, Jiang GP, Cao JD (2015) Undamped oscillations generated by hopf bifurcations in fractional-order recurrent neural networks with caputo derivative. IEEE Trans Neural Netw Learn Syst 26(12):3201–3214MathSciNetCrossRef
20.
Zurück zum Zitat Chen GQ, Friedman EG (2005) An RLC interconnect model based on fourier analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 24(2):170–183CrossRef Chen GQ, Friedman EG (2005) An RLC interconnect model based on fourier analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 24(2):170–183CrossRef
21.
Zurück zum Zitat Jenson V, Jeffreys G (1977) Mathematical methods in chemical engineering. Academic Press, New YorkMATH Jenson V, Jeffreys G (1977) Mathematical methods in chemical engineering. Academic Press, New YorkMATH
22.
Zurück zum Zitat Wu X, Eshete M (2011) Bifurcation analysis for a model of gene expression with delays Commun. Nonlinear Sci Numer Simul 16:1073–1088MathSciNetCrossRefMATH Wu X, Eshete M (2011) Bifurcation analysis for a model of gene expression with delays Commun. Nonlinear Sci Numer Simul 16:1073–1088MathSciNetCrossRefMATH
23.
Zurück zum Zitat Zhang T, Song Y, Zhang H (2012) The stability and Hopf bifurcation analysis of a gene expression model. J Math Anal Appl 395:103–113MathSciNetCrossRefMATH Zhang T, Song Y, Zhang H (2012) The stability and Hopf bifurcation analysis of a gene expression model. J Math Anal Appl 395:103–113MathSciNetCrossRefMATH
24.
Zurück zum Zitat Cao J, Jiang H (2013) Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory system with delay. Neurocomputing 99:381–389CrossRef Cao J, Jiang H (2013) Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory system with delay. Neurocomputing 99:381–389CrossRef
25.
Zurück zum Zitat Song Y, Han Y, Zhang Y (2014) Stability and Hopf bifurcation in a model of gene expression with distributed time delays. Appl Math Comput 243:398–412MathSciNetMATH Song Y, Han Y, Zhang Y (2014) Stability and Hopf bifurcation in a model of gene expression with distributed time delays. Appl Math Comput 243:398–412MathSciNetMATH
26.
Zurück zum Zitat Zang H, Zhang T, Zhang Y (2015) Bifurcation analysis of a mathematical model for genetic regulatory network with time delays. Appl Math Comput 260:204–226MathSciNet Zang H, Zhang T, Zhang Y (2015) Bifurcation analysis of a mathematical model for genetic regulatory network with time delays. Appl Math Comput 260:204–226MathSciNet
27.
28.
Zurück zum Zitat Ji RR, Ding L, Yan XM, Xin M (2010) Modelling gene regulatory network by fractional order differential equations. In: IEEE fifth international conference on BIC-TA, pp 431–434 Ji RR, Ding L, Yan XM, Xin M (2010) Modelling gene regulatory network by fractional order differential equations. In: IEEE fifth international conference on BIC-TA, pp 431–434
29.
Zurück zum Zitat Ren FL, Cao F, Cao JD (2015) Mittag-leffler stability and generalized mittag- leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190CrossRef Ren FL, Cao F, Cao JD (2015) Mittag-leffler stability and generalized mittag- leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190CrossRef
30.
Zurück zum Zitat Zhang YQ, Pu YF, Zhang HS, Cong Y, Zhou JL (2014) An extended fractional Kalman filter for inferring gene regulatory networks using time-series data. Chemom Intell Lab 138:57–63CrossRef Zhang YQ, Pu YF, Zhang HS, Cong Y, Zhou JL (2014) An extended fractional Kalman filter for inferring gene regulatory networks using time-series data. Chemom Intell Lab 138:57–63CrossRef
31.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, New YorkMATH Podlubny I (1999) Fractional differential equations. Academic Press, New YorkMATH
32.
Zurück zum Zitat Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somito genesis oscillator. Curr Biol 13:1398–1408CrossRef Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somito genesis oscillator. Curr Biol 13:1398–1408CrossRef
33.
Zurück zum Zitat Chen L, Aihara K (2002) Stability of genetic regulatory networks with time delay delay. IEEE Trans Circuits Syst I Fundam Theory Appl 49:602–608MathSciNetCrossRefMATH Chen L, Aihara K (2002) Stability of genetic regulatory networks with time delay delay. IEEE Trans Circuits Syst I Fundam Theory Appl 49:602–608MathSciNetCrossRefMATH
34.
Zurück zum Zitat Xiao M, Cao JD (2008) Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays. Math Biosci 215:55–63MathSciNetCrossRefMATH Xiao M, Cao JD (2008) Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays. Math Biosci 215:55–63MathSciNetCrossRefMATH
35.
Zurück zum Zitat Zamore P, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524CrossRef Zamore P, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524CrossRef
Metadaten
Titel
Local Bifurcation Analysis of a Fractional-Order Dynamic Model of Genetic Regulatory Networks with Delays
verfasst von
Qingshan Sun
Min Xiao
Binbin Tao
Publikationsdatum
28.08.2017
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2018
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-017-9690-7

Weitere Artikel der Ausgabe 3/2018

Neural Processing Letters 3/2018 Zur Ausgabe

Neuer Inhalt