Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2024

01.02.2024

Localized excitation and fractal structures of a (2 + 1)-dimensional Longwater wave equation

verfasst von: S.-f Wang

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this paper is to obtain some variable separation solitary solutions of (2 + 1)-dimensional nonlinear long water wave (LWW) equation through symbolic computation. By applying Riccati equation mapping method, the localized dromion excitations are constructed and different number of \(M \times N\) multi-dromions are described by selecting appropriate functions for the LWW equations, which provide a model of the interaction between two waves propagation consequently, the solition solutions are obtained in different forms of dynamical structures. Moreover, the collision phenomena between two multidromions are explored he fractal structure was also investigated. The results have rich physical structures that are helpful to explain the nonlinear solitary phenomena in nonlinear physics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdelkawy, M.A., Ezz-Eldien, S.S., Biswas, A., et al.: Optical solitons for Chen-Lee-Liu equation with two spectral collocation approaches. Comput. Math. Math. Phys. 61 (9), 1432–1443 (2021)MathSciNetCrossRef Abdelkawy, M.A., Ezz-Eldien, S.S., Biswas, A., et al.: Optical solitons for Chen-Lee-Liu equation with two spectral collocation approaches. Comput. Math. Math. Phys. 61 (9), 1432–1443 (2021)MathSciNetCrossRef
Zurück zum Zitat Abdelwahed, H.G., Mahmoud. A.E., et al.: Investigation of the Ripa model via NHRS scheme with its wide-ranging applications. Fractal Fractional. 6 (12), 745 1–18 (2022) Abdelwahed, H.G., Mahmoud. A.E., et al.: Investigation of the Ripa model via NHRS scheme with its wide-ranging applications. Fractal Fractional. 6 (12), 745 1–18 (2022)
Zurück zum Zitat Abdulghani, R.A., Mohammed, B.A.: Analytical and numerical solutions for the variant Boussinseq equations. J. Taibah Univ. Sci. 14(1), 454–462 (2020)CrossRef Abdulghani, R.A., Mohammed, B.A.: Analytical and numerical solutions for the variant Boussinseq equations. J. Taibah Univ. Sci. 14(1), 454–462 (2020)CrossRef
Zurück zum Zitat Abdullahi, Y., Abdulkadir, S.T.: Dynamics of Lump-periodic, breather and two-wave solutions with the long wave in shallow water under gravity and 2D nonlinear lattice. Commun. Nonlinear Sci. Numer. Simul. 99(105846), 1–10 (2021)MathSciNet Abdullahi, Y., Abdulkadir, S.T.: Dynamics of Lump-periodic, breather and two-wave solutions with the long wave in shallow water under gravity and 2D nonlinear lattice. Commun. Nonlinear Sci. Numer. Simul. 99(105846), 1–10 (2021)MathSciNet
Zurück zum Zitat Alharbi, A.R., Faisal, M.I., et al.: Higher order numerical approaches for nonlinear equations by decomposition technique. IEEE Access. 7, 44329–44337 (2019)CrossRef Alharbi, A.R., Faisal, M.I., et al.: Higher order numerical approaches for nonlinear equations by decomposition technique. IEEE Access. 7, 44329–44337 (2019)CrossRef
Zurück zum Zitat Arshad, M., Seadawy, A., et al.: Travelling wave solutions of generalized coupled Zakharov- Kuznetsov and dispersive long wave equations. Results Phys. 6, 1136–1145 (2016)CrossRefADS Arshad, M., Seadawy, A., et al.: Travelling wave solutions of generalized coupled Zakharov- Kuznetsov and dispersive long wave equations. Results Phys. 6, 1136–1145 (2016)CrossRefADS
Zurück zum Zitat Dai, C.Q., Wang, Y.Y.: Localized coherent structures based on variable separation solution of the (2+1)- dimen sional Boiti-Leon-Pempinelli equation. Nonlinear Dyn. 70, 189–196 (2012)CrossRef Dai, C.Q., Wang, Y.Y.: Localized coherent structures based on variable separation solution of the (2+1)- dimen sional Boiti-Leon-Pempinelli equation. Nonlinear Dyn. 70, 189–196 (2012)CrossRef
Zurück zum Zitat Fendzi-Donfack, E., Tala-Tebue, E., et al.: Dynamical behaviours and fractional alphabetical-exotic solitons in a coupled nonlinear electrical transmission lattice including wave obliqueness. Opt. Quant. Electron. 55(1), 1–25 (2023)CrossRef Fendzi-Donfack, E., Tala-Tebue, E., et al.: Dynamical behaviours and fractional alphabetical-exotic solitons in a coupled nonlinear electrical transmission lattice including wave obliqueness. Opt. Quant. Electron. 55(1), 1–25 (2023)CrossRef
Zurück zum Zitat Fendzi-Donfack, E., William Kamkou Temgoua, G., et al.: Exotical solitons for an intrinsic fractional circuit using the sine-cosine method. Chaos Solitons Fractals. 160, 112253 1–7 (2022) Fendzi-Donfack, E., William Kamkou Temgoua, G., et al.: Exotical solitons for an intrinsic fractional circuit using the sine-cosine method. Chaos Solitons Fractals. 160, 112253 1–7 (2022)
Zurück zum Zitat Gaber, A.A.: Solitary and periodic wave solutions of (2+1)-dimensions of dispersive long wave equations on shallow waters. J. Ocean Eng. Sci. 6(3), 292–298 (2021)CrossRef Gaber, A.A.: Solitary and periodic wave solutions of (2+1)-dimensions of dispersive long wave equations on shallow waters. J. Ocean Eng. Sci. 6(3), 292–298 (2021)CrossRef
Zurück zum Zitat Ghazala, A., Sarfraz, M.: Multiple optical soliton solutions for CGL equation with Kerr law non- linearity via extended modified auxiliary equation mapping method. Optik 242(167258), 1–7 (2021) Ghazala, A., Sarfraz, M.: Multiple optical soliton solutions for CGL equation with Kerr law non- linearity via extended modified auxiliary equation mapping method. Optik 242(167258), 1–7 (2021)
Zurück zum Zitat Kumar, H., Chand, F.: Applications of extended F-expansion and projective Riccatti equation methods to (2+1)- dimensional soliton equations. AIP Adv. 3 (3) , 032128 1–20 (2013) Kumar, H., Chand, F.: Applications of extended F-expansion and projective Riccatti equation methods to (2+1)- dimensional soliton equations. AIP Adv. 3 (3) , 032128 1–20 (2013)
Zurück zum Zitat Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the Sawada- Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scripta. 97 (3), 035201 1–8 (2022) Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the Sawada- Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scripta. 97 (3), 035201 1–8 (2022)
Zurück zum Zitat Lashkin, V.M.: Perturbation theory for solitons of the Fokas-Lenells equation: Inverse scattering transform approach. Phys. Rev. E. 103 (4), 1–14 (2021) Lashkin, V.M.: Perturbation theory for solitons of the Fokas-Lenells equation: Inverse scattering transform approach. Phys. Rev. E. 103 (4), 1–14 (2021)
Zurück zum Zitat Liu, R.X., Tian, B., et al.: Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics. Phys. B 413(1), 120–125 (2013)CrossRefADS Liu, R.X., Tian, B., et al.: Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics. Phys. B 413(1), 120–125 (2013)CrossRefADS
Zurück zum Zitat Lu, P.H., Wang, Y.Y., Dai, C.Q.: Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method. Chin. J. Phys. 74(96–105), 1–10 (2021)MathSciNet Lu, P.H., Wang, Y.Y., Dai, C.Q.: Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method. Chin. J. Phys. 74(96–105), 1–10 (2021)MathSciNet
Zurück zum Zitat Ma, S.H., Zhang, L.Y.: Fractal structures and chaotic behaviors in a (2+1)-dimensional nonlinear system. Commun. Theor. Phys. 53, 1117–1121 (2010)MathSciNetCrossRefADS Ma, S.H., Zhang, L.Y.: Fractal structures and chaotic behaviors in a (2+1)-dimensional nonlinear system. Commun. Theor. Phys. 53, 1117–1121 (2010)MathSciNetCrossRefADS
Zurück zum Zitat Mahmoud, A.E.A., Alharbi, A.: Analytical and numerical investigations of the modified Camassa-Holm equation. Pramana 95(117), 1–9 (2021)ADS Mahmoud, A.E.A., Alharbi, A.: Analytical and numerical investigations of the modified Camassa-Holm equation. Pramana 95(117), 1–9 (2021)ADS
Zurück zum Zitat Malwe, B.H., Betchewe, G., et al.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84(1), 171–177 (2016)MathSciNetCrossRef Malwe, B.H., Betchewe, G., et al.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84(1), 171–177 (2016)MathSciNetCrossRef
Zurück zum Zitat Michalska, M., Michalski, J., et al.: Bound-state soliton and noise-like pulse generation in a Thulium-Doped fiber laser nased on a nonlinear optical loop mirror. Appl. Sci. 12 (1664), 1664 1–9 (2022) Michalska, M., Michalski, J., et al.: Bound-state soliton and noise-like pulse generation in a Thulium-Doped fiber laser nased on a nonlinear optical loop mirror. Appl. Sci. 12 (1664), 1664 1–9 (2022)
Zurück zum Zitat Mohamed, K., Sahmim, S., et al.: Some recent finite volume schemes for one and two layers shallow water equations with variable density. Math. Methods Appl. Sci. 46 (12), 9227 1–17 (2023) Mohamed, K., Sahmim, S., et al.: Some recent finite volume schemes for one and two layers shallow water equations with variable density. Math. Methods Appl. Sci. 46 (12), 9227 1–17 (2023)
Zurück zum Zitat Mohammed, B.A., Abdulghani, R.A., et al.: Constructions of the soliton solutions to the good Boussinesq equation. Adv. Difference Equ. 2020(1), 1–14 (2020)MathSciNet Mohammed, B.A., Abdulghani, R.A., et al.: Constructions of the soliton solutions to the good Boussinesq equation. Adv. Difference Equ. 2020(1), 1–14 (2020)MathSciNet
Zurück zum Zitat Mostafa, M.A.K., Raghda, A. M. A, Dianchen, L.: Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes. Euro Phys. J. Plus. 136 (10), 1–19 (2021) Mostafa, M.A.K., Raghda, A. M. A, Dianchen, L.: Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes. Euro Phys. J. Plus. 136 (10), 1–19 (2021)
Zurück zum Zitat Neveen, G. A., Farag, A. H. Eltanboly., El-Azab, M.S., et al.: Pseudo-spectral approach for extracting optical solitons of the complex Ginzburg Landau equation with six nonlinearity forms. Optik. 254, 1–14 (2022) Neveen, G. A., Farag, A. H. Eltanboly., El-Azab, M.S., et al.: Pseudo-spectral approach for extracting optical solitons of the complex Ginzburg Landau equation with six nonlinearity forms. Optik. 254, 1–14 (2022)
Zurück zum Zitat Piliouras, E., Laleg-Kirati, T.M.: Soliton-based single-point pulse wave velocity model: A quantum mechanical approach. Biomed. Signal Process. Control. 71 (Part B), 1–10 (2022) Piliouras, E., Laleg-Kirati, T.M.: Soliton-based single-point pulse wave velocity model: A quantum mechanical approach. Biomed. Signal Process. Control. 71 (Part B), 1–10 (2022)
Zurück zum Zitat Qiu, D.q., Lu, C.: Riemann-Hilbert approach and N-soliton solutions of the generalized mixed nonlinear Schröd- inger equation. Theor. Math. Phys. 210 (3), 287–303 (2022) Qiu, D.q., Lu, C.: Riemann-Hilbert approach and N-soliton solutions of the generalized mixed nonlinear Schröd- inger equation. Theor. Math. Phys. 210 (3), 287–303 (2022)
Zurück zum Zitat Sabi’u, J., Tala-Tebue, E., Rezazadeh, H., et al.: Optical solitons for the decoupled nonlinear Schrödinger equation using Jacobi elliptic approach. Commun. Theor. Phys. 73(7), 19–26 (2021) Sabi’u, J., Tala-Tebue, E., Rezazadeh, H., et al.: Optical solitons for the decoupled nonlinear Schrödinger equation using Jacobi elliptic approach. Commun. Theor. Phys. 73(7), 19–26 (2021)
Zurück zum Zitat Salathiel, Y., Amadou, Y., et al.: Soliton solutions and traveling wave solutions for a discrete electrical lattice with nonlinear dispersion through the generalized Riccati equation mapping method. Nonlinear Dyn. 87(4), 2435–2443 (2017)MathSciNetCrossRef Salathiel, Y., Amadou, Y., et al.: Soliton solutions and traveling wave solutions for a discrete electrical lattice with nonlinear dispersion through the generalized Riccati equation mapping method. Nonlinear Dyn. 87(4), 2435–2443 (2017)MathSciNetCrossRef
Zurück zum Zitat Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172–180 (2014)MathSciNetCrossRef Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172–180 (2014)MathSciNetCrossRef
Zurück zum Zitat Seadawy, A.R., Mujahid, I., Lu, D.C.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 78(11), 3620–3632 (2019)MathSciNetCrossRef Seadawy, A.R., Mujahid, I., Lu, D.C.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 78(11), 3620–3632 (2019)MathSciNetCrossRef
Zurück zum Zitat Seadawy, A.R., Rizvi, S.T.R., et al.: Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation. Open Phys. 19(1), 1–10 (2021)CrossRef Seadawy, A.R., Rizvi, S.T.R., et al.: Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation. Open Phys. 19(1), 1–10 (2021)CrossRef
Zurück zum Zitat Seadawy Aly R., Kumar, D., et al.: Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. Euro. Phys. J. Plus. 133 (5), 182 1–11 (2018) Seadawy Aly R., Kumar, D., et al.: Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. Euro. Phys. J. Plus. 133 (5), 182 1–11 (2018)
Zurück zum Zitat Shahenac N.H.M., Bashar, M.H., et al.: Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2+1)-dimensional AKNS equation in water wave mechanics. Heliyon. 6 (10), 1–8 (2020) Shahenac N.H.M., Bashar, M.H., et al.: Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2+1)-dimensional AKNS equation in water wave mechanics. Heliyon. 6 (10), 1–8 (2020)
Zurück zum Zitat Shen, Y., Ingo D.: Recent progresses on experimental investigations of topological and dissipative solitons in liquid crystals. Crystals. 12 (94), 94 1–17 (2022) Shen, Y., Ingo D.: Recent progresses on experimental investigations of topological and dissipative solitons in liquid crystals. Crystals. 12 (94), 94 1–17 (2022)
Zurück zum Zitat Sohaly, M.A., Abdelrahman, M.A.E.: A novel motivation for the (2+1)- dimensional Chiral NLSE via two random sources. Indian J. Phys. 97(6), 1965–1971 (2023)CrossRefADS Sohaly, M.A., Abdelrahman, M.A.E.: A novel motivation for the (2+1)- dimensional Chiral NLSE via two random sources. Indian J. Phys. 97(6), 1965–1971 (2023)CrossRefADS
Zurück zum Zitat Sukhwinder, K., Prashant, K.R.: Non-linear periodic long waves based on Boussinesq equation for shallow water waves: a coupled FEM modeling. Ocean Eng. 245(110469), 1–15 (2022) Sukhwinder, K., Prashant, K.R.: Non-linear periodic long waves based on Boussinesq equation for shallow water waves: a coupled FEM modeling. Ocean Eng. 245(110469), 1–15 (2022)
Zurück zum Zitat Tala-Tebue, E., Djoufack, Z.I., et al.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127(23), 11124–11130 (2016)CrossRefADS Tala-Tebue, E., Djoufack, Z.I., et al.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127(23), 11124–11130 (2016)CrossRefADS
Zurück zum Zitat Tala-Tebue, E., Tsobgni-Fozap, D.C., et al.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation. European Physical Journal Plus. 129 (6), 1–10 (2014) Tala-Tebue, E., Tsobgni-Fozap, D.C., et al.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation. European Physical Journal Plus. 129 (6), 1–10 (2014)
Zurück zum Zitat Tian, B., Li, H., Gao, Y.T.: (2+1)-dimensional Broer-Kaup system of shallow water waves and similarity solutions with symbolic computation. Z. Angew. Math. Phys. 5, 783–790 (2005)MathSciNetCrossRef Tian, B., Li, H., Gao, Y.T.: (2+1)-dimensional Broer-Kaup system of shallow water waves and similarity solutions with symbolic computation. Z. Angew. Math. Phys. 5, 783–790 (2005)MathSciNetCrossRef
Zurück zum Zitat Wang, R.M., Ge, J.Y., Dai, C.Q., et al.: Construction of new variable separation excitations via extended projective Ricatti equation expansion method in (2+1)-dimensional dispersive Long Wave systems. Int. J. Theor. Phys. 46(1), 102–115 (2007)MathSciNetCrossRef Wang, R.M., Ge, J.Y., Dai, C.Q., et al.: Construction of new variable separation excitations via extended projective Ricatti equation expansion method in (2+1)-dimensional dispersive Long Wave systems. Int. J. Theor. Phys. 46(1), 102–115 (2007)MathSciNetCrossRef
Zurück zum Zitat Wang, X.F., Yue, X.G., Mohammed, K.A., et al.: A unique computational investigation of the exact traveling wave solutions for the fractional-order Kaup-Boussinesq and generalized Hirota Satsuma coupled KdV systems arising from water waves and interaction of long waves. J. Ocean Eng. Sci. 2022, 1–17 (2022) Wang, X.F., Yue, X.G., Mohammed, K.A., et al.: A unique computational investigation of the exact traveling wave solutions for the fractional-order Kaup-Boussinesq and generalized Hirota Satsuma coupled KdV systems arising from water waves and interaction of long waves. J. Ocean Eng. Sci. 2022, 1–17 (2022)
Zurück zum Zitat Wang, J., Shehzad, K., Seadawy, A.R. et al.: Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability. J. Taibah Univ. Sci. 17 (1), 1–13 (2023)CrossRef Wang, J., Shehzad, K., Seadawy, A.R. et al.: Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability. J. Taibah Univ. Sci. 17 (1), 1–13 (2023)CrossRef
Zurück zum Zitat Xu, L., Cheng, X., Dai, C.Q.: Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation. Euro. Phys plus. 130(242), 1–8 (2015) Xu, L., Cheng, X., Dai, C.Q.: Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation. Euro. Phys plus. 130(242), 1–8 (2015)
Zurück zum Zitat Xu, G., Hil, L., Fatome, J. et al.: Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators. Opt. Lett. 47 (6), 1486–1489 (2022)CrossRefPubMedADS Xu, G., Hil, L., Fatome, J. et al.: Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators. Opt. Lett. 47 (6), 1486–1489 (2022)CrossRefPubMedADS
Zurück zum Zitat Yiasir Arafat M.S., Fatema, K., et al.: Promulgation on various genres soliton of Maccari system in nonlinear optics. Opt. Quant. Electr. 54 (4), 1–18 (2022) Yiasir Arafat M.S., Fatema, K., et al.: Promulgation on various genres soliton of Maccari system in nonlinear optics. Opt. Quant. Electr. 54 (4), 1–18 (2022)
Zurück zum Zitat Zayed, E.M., Al-Nowehy, A. G.: Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method. Opt. Quan. Electr. 49 (11), 1–23 (2017) Zayed, E.M., Al-Nowehy, A. G.: Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method. Opt. Quan. Electr. 49 (11), 1–23 (2017)
Metadaten
Titel
Localized excitation and fractal structures of a (2 + 1)-dimensional Longwater wave equation
verfasst von
S.-f Wang
Publikationsdatum
01.02.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05731-7

Weitere Artikel der Ausgabe 2/2024

Optical and Quantum Electronics 2/2024 Zur Ausgabe