Skip to main content

2020 | OriginalPaper | Buchkapitel

Locally Resonant Metamaterial Patches on Rear Shock Towers of a Vehicle to Reduce Structure‑Borne Road Noise: Numerical and Experimental Performance Validation

verfasst von : L. Sangiuliano, C. Claeys, E. Deckers, J. De Smet, B. Pluymers, W. Desmet

Erschienen in: Automotive Acoustics Conference 2019

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past decades, automotive companies have sought lightweight and performant noise, vibration and harshness (NVH) solutions to comply with stringent regulations for CO2 emissions and noise pollution. Combining lightweight design with improved NVH solutions is often a challenging task: low mass and high stiffness materials are generally characterized by poor NVH behavior and low noise and vibration levels often require heavy and bulky additions, especially to be effective in the low frequency regime. To face this challenge, recently, locally resonant metamaterials (LRMs) have come to the fore. These materials combine in one solution lightweight design and superior noise and vibration attenuation performance, beating the mass law in tunable frequency ranges, referred to as stop bands. The LRM concept is used in this work to tackle a low frequency structure borne road noise problem in a commercial vehicle. A LRM solution is applied on the rear shock towers of the vehicle, with the goal of attenuating the vibrational energy entering into the vehicle body through the suspension assembly, which is excited by the interaction of the tire with the road while driving. This results in a reduction of the noise in the interior compartment around 190 Hz. In order to benchmark the performance of the LRM concept, a vehicle is chosen which is sold with a tuned vibration absorber installed on each of the rear shock towers as NVH solution. Each of the tuned vibration absorbers (TVAs) adds 1.46 kg of mass to the vehicle. The LRM concept is designed to reduce the mass of the current solution by 48% and to have similar NVH performance. The LRM concept is realized through additive manufacturing and it is added as patches on the rear shock towers to replace the TVAs. Both numerical and experimental results in lab and on a smooth road profile validate the performance of the LRM concept proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mallick, P. K. Materials, design and manufacturing for lightweight vehicles. Elsevier (2010). Mallick, P. K. Materials, design and manufacturing for lightweight vehicles. Elsevier (2010).
2.
Zurück zum Zitat Fritschi, L., Brown, A., Kim, R., Schwela, D., Kephalopolous, S. Burden of disease from environmental noise: quantification of healthy life years lost in Europe. World Health Organization, Regional Office for Europe, Copenhagen (2011). Fritschi, L., Brown, A., Kim, R., Schwela, D., Kephalopolous, S. Burden of disease from environmental noise: quantification of healthy life years lost in Europe. World Health Organization, Regional Office for Europe, Copenhagen (2011).
3.
Zurück zum Zitat Fahy, F. J., Gardonio, P. Sound and structural vibration: radiation, transmission and response. Elsevier (2007). Fahy, F. J., Gardonio, P. Sound and structural vibration: radiation, transmission and response. Elsevier (2007).
4.
Zurück zum Zitat L. Brillouin, Wave propagation in periodic structures: electric filters and crystal lattices, Courier Corporation (2003). L. Brillouin, Wave propagation in periodic structures: electric filters and crystal lattices, Courier Corporation (2003).
5.
Zurück zum Zitat C. Goffaux, J. Sánchez-Dehesa, A. L. Yeyati, P. Lambin, A. Khelif, J. Vasseur, B. Djafari-Rouhani, Evidence of fano-like interference phenomena in locally resonant materials, Physical review letters 88 (22) (2002). C. Goffaux, J. Sánchez-Dehesa, A. L. Yeyati, P. Lambin, A. Khelif, J. Vasseur, B. Djafari-Rouhani, Evidence of fano-like interference phenomena in locally resonant materials, Physical review letters 88 (22) (2002).
6.
Zurück zum Zitat Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (5485), pp 1734–1736 (2000).CrossRef Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (5485), pp 1734–1736 (2000).CrossRef
7.
Zurück zum Zitat F. Lemoult, N. Kaina, M. Fink, G. Lerosey, Wave propagation control at the deep subwavelength scale in metamaterials, Nature Physics 9 (1) 55 (2013).CrossRef F. Lemoult, N. Kaina, M. Fink, G. Lerosey, Wave propagation control at the deep subwavelength scale in metamaterials, Nature Physics 9 (1) 55 (2013).CrossRef
8.
Zurück zum Zitat X. Zhou, X. Liu, G. Hu, Elastic metamaterials with local resonances: an overview. Theoretical and Applied Mechanics Letters 2 (4) (2012).CrossRef X. Zhou, X. Liu, G. Hu, Elastic metamaterials with local resonances: an overview. Theoretical and Applied Mechanics Letters 2 (4) (2012).CrossRef
9.
Zurück zum Zitat Claeys, C. C., Deckers, E., Pluymers, B., & Desmet, W. A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation. Mechanical Systems and Signal Processing, 70, 853–880 (2016).CrossRef Claeys, C. C., Deckers, E., Pluymers, B., & Desmet, W. A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation. Mechanical Systems and Signal Processing, 70, 853–880 (2016).CrossRef
10.
Zurück zum Zitat De Melo Filho, N. G. R., Van Belle, L., Claeys, C., Deckers, E., Desmet, W. Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterials double panels applied to the mass-air-mass resonance. Journal of Sound and Vibration, 442, 28–44 (2019).CrossRef De Melo Filho, N. G. R., Van Belle, L., Claeys, C., Deckers, E., Desmet, W. Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterials double panels applied to the mass-air-mass resonance. Journal of Sound and Vibration, 442, 28–44 (2019).CrossRef
11.
Zurück zum Zitat De Melo Filho, N. G. R., Sangiuliano, L., Claeys, C., Deckers, E., Desmet, W. Vibro-acoustic metamaterials for increased STL in acoustic resonance driven environments. Proceedings of NOVEM, 257 (1), pp. 537–549, Ibiza, Spain (2018). De Melo Filho, N. G. R., Sangiuliano, L., Claeys, C., Deckers, E., Desmet, W. Vibro-acoustic metamaterials for increased STL in acoustic resonance driven environments. Proceedings of NOVEM, 257 (1), pp. 537–549, Ibiza, Spain (2018).
12.
Zurück zum Zitat Claeys, C., Melo, N. F., Van Belle, L., Deckers, E., & Desmet, W. Design and validation of metamaterials for multiple structural stop bands in waveguides. Extreme Mechanics Letters, 12, 7—22 (2017).CrossRef Claeys, C., Melo, N. F., Van Belle, L., Deckers, E., & Desmet, W. Design and validation of metamaterials for multiple structural stop bands in waveguides. Extreme Mechanics Letters, 12, 7—22 (2017).CrossRef
13.
Zurück zum Zitat Sangiuliano, L., Claeys, C., Deckers, E., Pluymers, B., Desmet, W. Force isolation by locally resonant metamaterials to reduce NVH. SAE Technical Paper Series, 2018-01-1544 (2018). Sangiuliano, L., Claeys, C., Deckers, E., Pluymers, B., Desmet, W. Force isolation by locally resonant metamaterials to reduce NVH. SAE Technical Paper Series, 2018-01-1544 (2018).
14.
Zurück zum Zitat Douville, H., Masson, P., Berry, A. On-resonance transmissibility methodology for quantifying the structure-borne road noise of an automotive suspension assembly. Applied Acoustic 67, 358–382 (2006).CrossRef Douville, H., Masson, P., Berry, A. On-resonance transmissibility methodology for quantifying the structure-borne road noise of an automotive suspension assembly. Applied Acoustic 67, 358–382 (2006).CrossRef
15.
Zurück zum Zitat Kindt, P., Berckmans, D., De Coninck, F., Sas P., Desmet, W. Experimental analysis of the structure-borne tyre/road noise due to road discontinuities. Mechanical Systems and Signal Processing 23, 2557–2574 (2009).CrossRef Kindt, P., Berckmans, D., De Coninck, F., Sas P., Desmet, W. Experimental analysis of the structure-borne tyre/road noise due to road discontinuities. Mechanical Systems and Signal Processing 23, 2557–2574 (2009).CrossRef
16.
Zurück zum Zitat Tatlow, J., Ballatore, M. Road noise input identification for vehicle interior noise by multi-reference Transfer Path Analysis. Procedia engineering 199, 3296–3301 (2017).CrossRef Tatlow, J., Ballatore, M. Road noise input identification for vehicle interior noise by multi-reference Transfer Path Analysis. Procedia engineering 199, 3296–3301 (2017).CrossRef
17.
Zurück zum Zitat T. Sakata, H. Morimura, H. Ide, Effects of Tire Cavity Resonance on Vehicle Road Noise. Tire Science and Technology, 18 (2), pp. 68–79 (1990).CrossRef T. Sakata, H. Morimura, H. Ide, Effects of Tire Cavity Resonance on Vehicle Road Noise. Tire Science and Technology, 18 (2), pp. 68–79 (1990).CrossRef
18.
Zurück zum Zitat Hartleip, L. and Roggenkamp, T. Case Study – Experimental Determination of Airborne and Structure-borne Road Noise Spectral Content on Passenger Vehicles. SAE Technical Paper 2005-01-2522 (2005). Hartleip, L. and Roggenkamp, T. Case Study – Experimental Determination of Airborne and Structure-borne Road Noise Spectral Content on Passenger Vehicles. SAE Technical Paper 2005-01-2522 (2005).
19.
Zurück zum Zitat Kido, I., Nakamura, A., Hayashi, T., and Asai, M. Suspension Vibration Analysis for Road Noise Using Finite Element Model. SAE Technical Paper 1999-01-1788 (1999). Kido, I., Nakamura, A., Hayashi, T., and Asai, M. Suspension Vibration Analysis for Road Noise Using Finite Element Model. SAE Technical Paper 1999-01-1788 (1999).
20.
Zurück zum Zitat Kim, G.J., Holland, K.R. and Lalor, N. Identification of the airborne component of tyre-induced vehicle interior noise. Applied Acoustics, 51 (2), pp. 141–156 (1997).CrossRef Kim, G.J., Holland, K.R. and Lalor, N. Identification of the airborne component of tyre-induced vehicle interior noise. Applied Acoustics, 51 (2), pp. 141–156 (1997).CrossRef
21.
Zurück zum Zitat Sangiuliano, L., Claeys, C., Deckers, E., Pluymers, B., Desmet, W. Reducing Vehicle Interior NVH by Means of Locally Resonant Metamaterial Patches on a Rear Shock Tower. SAE Technical Paper Series, 2019-01-1502 (2019). Sangiuliano, L., Claeys, C., Deckers, E., Pluymers, B., Desmet, W. Reducing Vehicle Interior NVH by Means of Locally Resonant Metamaterial Patches on a Rear Shock Tower. SAE Technical Paper Series, 2019-01-1502 (2019).
22.
Zurück zum Zitat Wang, G., Wen, X., Wen, J., Shao, L., & Liu, Y. Two-dimensional locally resonant phononic crystals with binary structures. Physical review letters, 93(15), 154302 (2004).CrossRef Wang, G., Wen, X., Wen, J., Shao, L., & Liu, Y. Two-dimensional locally resonant phononic crystals with binary structures. Physical review letters, 93(15), 154302 (2004).CrossRef
23.
Zurück zum Zitat Claeys, C., Vergote, K., Sas, P., & Desmet, W. On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels. Journal of Sound and Vibration, 332(6), 1418–1436 (2013).CrossRef Claeys, C., Vergote, K., Sas, P., & Desmet, W. On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels. Journal of Sound and Vibration, 332(6), 1418–1436 (2013).CrossRef
24.
Zurück zum Zitat Brillouin, L. Wave propagation in periodic structures (Vol. 2nd). McGraw-Hill Book Company (1946). Brillouin, L. Wave propagation in periodic structures (Vol. 2nd). McGraw-Hill Book Company (1946).
25.
Zurück zum Zitat Siemens, NX Nastran 12. Quick Reference Guide, Siemens PLM Software Inc. (2017). Siemens, NX Nastran 12. Quick Reference Guide, Siemens PLM Software Inc. (2017).
26.
Zurück zum Zitat B. R. Mace, E. Manconi. Modelling wave propagation in two-dimensional structures using finite element analysis, Journal of Sound and Vibration, 318 (4), pp. 884–902 (2008).CrossRef B. R. Mace, E. Manconi. Modelling wave propagation in two-dimensional structures using finite element analysis, Journal of Sound and Vibration, 318 (4), pp. 884–902 (2008).CrossRef
27.
Zurück zum Zitat Langley, R. S. A note on the force boundary conditions for two-dimensional periodic structures with corner freedoms. Journal of Sound and Vibration, 162(2), 377–381 (1993).MATHCrossRef Langley, R. S. A note on the force boundary conditions for two-dimensional periodic structures with corner freedoms. Journal of Sound and Vibration, 162(2), 377–381 (1993).MATHCrossRef
28.
Zurück zum Zitat Cremer, L., Heckl, M., Petersson, B.A.T. Structure-borne sound. Springer, 341–359 (2005). Cremer, L., Heckl, M., Petersson, B.A.T. Structure-borne sound. Springer, 341–359 (2005).
Metadaten
Titel
Locally Resonant Metamaterial Patches on Rear Shock Towers of a Vehicle to Reduce Structure‑Borne Road Noise: Numerical and Experimental Performance Validation
verfasst von
L. Sangiuliano
C. Claeys
E. Deckers
J. De Smet
B. Pluymers
W. Desmet
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-658-27669-0_10

    Premium Partner