Skip to main content
Erschienen in: Telecommunication Systems 1/2021

05.01.2021

Low-complexity interference cancellation algorithms for detection in media-based modulated uplink massive-MIMO systems

verfasst von: Manish Mandloi, Devendra Singh Gurjar

Erschienen in: Telecommunication Systems | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Media-based modulation (MBM) is a novel modulation technique that can improve the spectral efficiency of the existing wireless systems. In MBM, multiple radio frequency (RF) mirrors are placed near the transmit antenna(s) and are switched ON/OFF to create different channel fade realizations. In such systems, additional information is conveyed through the ON/OFF status of RF mirrors along with conventional modulation symbols. A challenging task at the receiver is to detect the transmitted information symbols and extract the additional information from the channel fade realization used for transmission. In this paper, we consider a massive MIMO (mMIMO) system where each user relies on MBM for transmitting information to the base station, and investigate the problem of symbol detection at the base station. First, we propose a mirror activation pattern (MAP) selection based modified iterative sequential detection algorithm. With the proposed algorithm, the most favorable MAP is selected, followed by the detection of symbol corresponding to the selected MAP. Each solution is subjected to the reliability check before getting the update. Next, we introduce a K favorable MAP search based iterative interference cancellation (KMAP-IIC) algorithm. In particular, a selection rule is introduced in KMAP-IIC for deciding the set of favorable MAPs over which iterative interference cancellation is performed, followed by a greedy update scheme for detecting the MBM symbols corresponding to each user. Simulation results show that the proposed detection algorithms exhibit superior performance-complexity trade-off over the existing detection techniques in MBM-mMIMO systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun, Y., et al. (2019). Application of machine learning in wireless networks: Key techniques and open issues. IEEE Communications Surveys and Tutorials, 21(4), 3072–3108.CrossRef Sun, Y., et al. (2019). Application of machine learning in wireless networks: Key techniques and open issues. IEEE Communications Surveys and Tutorials, 21(4), 3072–3108.CrossRef
2.
Zurück zum Zitat Chen, M., et al. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys and Tutorials, 21(4), 3039–3071.CrossRef Chen, M., et al. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys and Tutorials, 21(4), 3039–3071.CrossRef
4.
Zurück zum Zitat Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
5.
Zurück zum Zitat Lu, Lu, et al. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 8(5), 742–748.CrossRef Lu, Lu, et al. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 8(5), 742–748.CrossRef
6.
Zurück zum Zitat Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
7.
Zurück zum Zitat Yang, S., & Hanzo, L. (2015). Fifty years of MIMO detection: The road to large-scale MIMOs. IEEE Communications Survey and Tutorials, 17(4), 1941–1988.CrossRef Yang, S., & Hanzo, L. (2015). Fifty years of MIMO detection: The road to large-scale MIMOs. IEEE Communications Survey and Tutorials, 17(4), 1941–1988.CrossRef
8.
Zurück zum Zitat Basar, E. (2016). Index modulation techniques for 5G wireless networks. IEEE Communications Magazine, 54(7), 168–175.CrossRef Basar, E. (2016). Index modulation techniques for 5G wireless networks. IEEE Communications Magazine, 54(7), 168–175.CrossRef
9.
Zurück zum Zitat Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications, 68(5), 3187–3196.CrossRef Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications, 68(5), 3187–3196.CrossRef
10.
Zurück zum Zitat Wen, M., Cheng, X., & Yang, L. (2017). Index modulation for 5G wireless communications. New York: Springer.CrossRef Wen, M., Cheng, X., & Yang, L. (2017). Index modulation for 5G wireless communications. New York: Springer.CrossRef
11.
Zurück zum Zitat Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRef Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRef
12.
Zurück zum Zitat Younis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2011). Generalised spatial modulation. In Proceedings of the 44th asilomar conference on signals, systems, and computers (pp. 1498–1502). Younis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2011). Generalised spatial modulation. In Proceedings of the 44th asilomar conference on signals, systems, and computers (pp. 1498–1502).
13.
Zurück zum Zitat Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 8(5), 742–758.CrossRef Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
14.
Zurück zum Zitat Rusek, F., Presson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Presson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
15.
Zurück zum Zitat Khandani, A. K. (2013). Media-based modulation: A new approach to wireless transmission. In 2013 IEEE international symposium on information theory (pp. 3050–3054). Khandani, A. K. (2013). Media-based modulation: A new approach to wireless transmission. In 2013 IEEE international symposium on information theory (pp. 3050–3054).
16.
Zurück zum Zitat Seifi, E., Atamanesh, M., & Khandani, A. K. (2015). Media-based modulation: A new frontier in wireless communications. arXiv preprint arXiv:1507.07516. Seifi, E., Atamanesh, M., & Khandani, A. K. (2015). Media-based modulation: A new frontier in wireless communications. arXiv preprint arXiv:​1507.​07516.
17.
Zurück zum Zitat Basar, E. (2019). Media-based modulation for future wireless systems: A tutorial. IEEE Wireless Communications, 26(5), 160–166.CrossRef Basar, E. (2019). Media-based modulation for future wireless systems: A tutorial. IEEE Wireless Communications, 26(5), 160–166.CrossRef
18.
Zurück zum Zitat Naresh, Y., & Chockalingam, A. (2019). Performance analysis of full-duplex decode-and-forward relaying with media-based modulation. IEEE Transactions on Vehicular Technology, 68(2), 1510–1524.CrossRef Naresh, Y., & Chockalingam, A. (2019). Performance analysis of full-duplex decode-and-forward relaying with media-based modulation. IEEE Transactions on Vehicular Technology, 68(2), 1510–1524.CrossRef
19.
Zurück zum Zitat Shamasundar, B., & Chockalingam, A. (2018). Media-based modulation for the uplink in massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(9), 8169–8183.CrossRef Shamasundar, B., & Chockalingam, A. (2018). Media-based modulation for the uplink in massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(9), 8169–8183.CrossRef
20.
Zurück zum Zitat Zhang, L., Zhao, M., & Li, L. (2018). Low-complexity multi-user detection for MBM in uplink large-scale MIMO systems. IEEE Communications Letters, 22(8), 1568–1571.CrossRef Zhang, L., Zhao, M., & Li, L. (2018). Low-complexity multi-user detection for MBM in uplink large-scale MIMO systems. IEEE Communications Letters, 22(8), 1568–1571.CrossRef
21.
Zurück zum Zitat Mesleh, R. Y., et al. (July 2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRef Mesleh, R. Y., et al. (July 2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRef
22.
Zurück zum Zitat Jeganathan, J., Ghrayed, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.CrossRef Jeganathan, J., Ghrayed, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.CrossRef
23.
Zurück zum Zitat Renzo, M. D., et al. (2014). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.CrossRef Renzo, M. D., et al. (2014). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.CrossRef
24.
Zurück zum Zitat Younis, A., et. al. (2010). Generalized spatial modulation. In 2010 conference record for the forty fourth asilomar conference on signals, systems and computers. Younis, A., et. al. (2010). Generalized spatial modulation. In 2010 conference record for the forty fourth asilomar conference on signals, systems and computers.
25.
Zurück zum Zitat Wang, J., Jia, S., & Song, J. (2012). Generalized spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications, 11(4), 1605–1615.CrossRef Wang, J., Jia, S., & Song, J. (2012). Generalized spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications, 11(4), 1605–1615.CrossRef
26.
Zurück zum Zitat Narasimhan, T. L., Raviteja, P., & Chockalingam, A. (2015). Generalized spatial modulation in large-scale multiuser MIMO systems. IEEE Transactions on Wireless Communications, 17(7), 3764–3779.CrossRef Narasimhan, T. L., Raviteja, P., & Chockalingam, A. (2015). Generalized spatial modulation in large-scale multiuser MIMO systems. IEEE Transactions on Wireless Communications, 17(7), 3764–3779.CrossRef
27.
Zurück zum Zitat Naresh, Y., & Chockalingam, A. (2017). On media-based modulation using RF mirrors. IEEE Transactions on Vehicular Technology, 66(6), 4967–4983.CrossRef Naresh, Y., & Chockalingam, A. (2017). On media-based modulation using RF mirrors. IEEE Transactions on Vehicular Technology, 66(6), 4967–4983.CrossRef
28.
Zurück zum Zitat Wu, M., et al. (2014). Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations. IEEE Journal of Selected Topics in Signal Processing, 8(5), 916–929.CrossRef Wu, M., et al. (2014). Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations. IEEE Journal of Selected Topics in Signal Processing, 8(5), 916–929.CrossRef
29.
Zurück zum Zitat Tang, C., Liu, C., & Yuan, L. (2016). High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO. IEEE Communications Letters, 20(3), 490–493.CrossRef Tang, C., Liu, C., & Yuan, L. (2016). High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO. IEEE Communications Letters, 20(3), 490–493.CrossRef
30.
Zurück zum Zitat Mandloi, M., & Bhatia, V. (2017). Low-complexity near-optimal iterative sequential detection for uplink massive MIMO systems. IEEE Communications Letters, 21(3), 568–571.CrossRef Mandloi, M., & Bhatia, V. (2017). Low-complexity near-optimal iterative sequential detection for uplink massive MIMO systems. IEEE Communications Letters, 21(3), 568–571.CrossRef
31.
Zurück zum Zitat Dai, L., et al. (2015). Low complexity soft-output signal detection based on Gauss–Seidel method for uplink multiuser large-scale MIMO. IEEE Transactions on Vehicular Technology, 64(10), 4839–4845.CrossRef Dai, L., et al. (2015). Low complexity soft-output signal detection based on Gauss–Seidel method for uplink multiuser large-scale MIMO. IEEE Transactions on Vehicular Technology, 64(10), 4839–4845.CrossRef
32.
Zurück zum Zitat Naresh, Y., & Chockalingam, A. (2018). Performance analysis of media-based modulation with imperfect channel state information. IEEE Transaction on Vehicular Technology, 67(5), 4192–4207.CrossRef Naresh, Y., & Chockalingam, A. (2018). Performance analysis of media-based modulation with imperfect channel state information. IEEE Transaction on Vehicular Technology, 67(5), 4192–4207.CrossRef
33.
Zurück zum Zitat Narasimhan, T. L., & Chockalingam, A. (2014). Channel hardening-exploiting message passing (CHEMPP) receiver in large-scale MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 847–860.CrossRef Narasimhan, T. L., & Chockalingam, A. (2014). Channel hardening-exploiting message passing (CHEMPP) receiver in large-scale MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 847–860.CrossRef
34.
Zurück zum Zitat Rajashekar, R., Hari, K. V. S., & Hanzo, L. (2014). Reduced-complexity ML detection and capacity-optimized training for spatial modulation systems. IEEE Transactions on Communications, 62(1), 112–125. CrossRef Rajashekar, R., Hari, K. V. S., & Hanzo, L. (2014). Reduced-complexity ML detection and capacity-optimized training for spatial modulation systems. IEEE Transactions on Communications, 62(1), 112–125. CrossRef
35.
Zurück zum Zitat Van, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore: JHU Press. Van, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore: JHU Press.
36.
Zurück zum Zitat Bjorck, A. (1996). Numerical methods for least square problems. Philadelphia: SIAM.CrossRef Bjorck, A. (1996). Numerical methods for least square problems. Philadelphia: SIAM.CrossRef
Metadaten
Titel
Low-complexity interference cancellation algorithms for detection in media-based modulated uplink massive-MIMO systems
verfasst von
Manish Mandloi
Devendra Singh Gurjar
Publikationsdatum
05.01.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 1/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00745-y

Weitere Artikel der Ausgabe 1/2021

Telecommunication Systems 1/2021 Zur Ausgabe

Neuer Inhalt