Skip to main content
Erschienen in: Foundations of Computational Mathematics 6/2014

01.12.2014

Low Complexity Methods For Discretizing Manifolds Via Riesz Energy Minimization

verfasst von: S. V. Borodachov, D. P. Hardin, E. B. Saff

Erschienen in: Foundations of Computational Mathematics | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \(A\) be a compact \(d\)-rectifiable set embedded in Euclidean space \({\mathbb R}^p, d\le p\). For a given continuous distribution \(\sigma (x)\) with respect to a \(d\)-dimensional Hausdorff measure on \(A\), our earlier results provided a method for generating \(N\)-point configurations on \(A\) that have an asymptotic distribution \(\sigma (x)\) as \(N\rightarrow \infty \); moreover, such configurations are “quasi-uniform” in the sense that the ratio of the covering radius to the separation distance is bounded independently of \(N\). The method is based upon minimizing the energy of \(N\) particles constrained to \(A\) interacting via a weighted power-law potential \(w(x,y)|x-y|^{-s}\), where \(s>d\) is a fixed parameter and \(w(x,y)=\left( \sigma (x)\sigma (y)\right) ^{-({s}/{2d})}\). Here we show that one can generate points on \(A\) with the aforementioned properties keeping in the energy sums only those pairs of points that are located at a distance of at most \(r_N=C_N N^{-1/d}\) from each other, with \(C_N\) being a positive sequence tending to infinity arbitrarily slowly. To do this, we minimize the energy with respect to a varying truncated weight \(v_N(x,y)=\Phi (|x-y|/r_N)\cdot w(x,y)\), where \(\Phi :(0,\infty )\rightarrow [0,\infty )\) is a bounded function with \(\Phi (t)=0, t\ge 1\), and \(\lim _{t\rightarrow 0^+}\Phi (t)=1\). Under appropriate assumptions, this reduces the complexity of generating \(N\)-point “low energy” discretizations to order \(N C_N^d\) computations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For integer \(d\), we normalize Hausdorff measure on \({\mathbb R}^p\) so that \(\mathcal {H}_d(U)=1\) if \(U\) is a \(d\)-dimensional unit cube embedded in \({\mathbb R}^p\).
 
2
The covering radius of a configuration (relative to a set \(A\)) is also referred to as the fill radius or the mesh norm of the configuration.
 
Literatur
1.
Zurück zum Zitat J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), 357–385. J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), 357–385.
2.
Zurück zum Zitat J. L. Bentley, D. F. Stanat, and E. H. Williams, The complexity of finding fixed-radius near neighbors, Inform. Proc. Lett., 6(6) (1977), 209–212. J. L. Bentley, D. F. Stanat, and E. H. Williams, The complexity of finding fixed-radius near neighbors, Inform. Proc. Lett., 6(6) (1977), 209–212.
3.
Zurück zum Zitat S.V. Borodachov, D. P. Hardin, and E.B. Saff, Asymptotics of best-packing on rectifiable sets, Proc. Amer. Math. Soc., 135 (2007), 2369–2380. S.V. Borodachov, D. P. Hardin, and E.B. Saff, Asymptotics of best-packing on rectifiable sets, Proc. Amer. Math. Soc., 135 (2007), 2369–2380.
4.
Zurück zum Zitat S.V. Borodachov, D.P. Hardin, and E.B. Saff, Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets, Trans. Amer. Math. Soc., 360 (2008), 1559–1580. S.V. Borodachov, D.P. Hardin, and E.B. Saff, Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets, Trans. Amer. Math. Soc., 360 (2008), 1559–1580.
5.
Zurück zum Zitat M. Bowick, D.R. Nelson, and A. Travesset, Interacting topological defects in frozen topographies, Phys. Rev. B 62 (2000), 8738–8751. M. Bowick, D.R. Nelson, and A. Travesset, Interacting topological defects in frozen topographies, Phys. Rev. B 62 (2000), 8738–8751.
6.
Zurück zum Zitat J.S. Brauchart, D.P. Hardin, and E.B. Saff, The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere, Contemp. Math., 578 (2012), 31–61. J.S. Brauchart, D.P. Hardin, and E.B. Saff, The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere, Contemp. Math., 578 (2012), 31–61.
7.
Zurück zum Zitat B. Chazelle, An improved algorithm for the fixed-radius neighbor problem, Inform. Proc. Lett., 16 (1983), 193–198. B. Chazelle, An improved algorithm for the fixed-radius neighbor problem, Inform. Proc. Lett., 16 (1983), 193–198.
8.
Zurück zum Zitat J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer Verlag, New York: 3rd ed., 1999. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer Verlag, New York: 3rd ed., 1999.
9.
Zurück zum Zitat H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.
10.
Zurück zum Zitat H. Harbrecht, W.L. Wendland, and N. Zorii, On Riesz minimal energy problems, J. Math. Anal. Appl., 393 (2012), no. 2, 397–412. H. Harbrecht, W.L. Wendland, and N. Zorii, On Riesz minimal energy problems, J. Math. Anal. Appl., 393 (2012), no. 2, 397–412.
11.
Zurück zum Zitat D.P. Hardin and E.B. Saff, Minimal Riesz energy point configurations for rectifiable \(d\)-dimensional manifolds, Adv. Math., 193 (2005), no. 1, 174–204. D.P. Hardin and E.B. Saff, Minimal Riesz energy point configurations for rectifiable \(d\)-dimensional manifolds, Adv. Math., 193 (2005), no. 1, 174–204.
12.
Zurück zum Zitat D. P. Hardin, E. B. Saff, and J. T. Whitehouse, Quasi-uniformity of minimal weighted energy points, J. Complexity 28 (2012), 177–191. D. P. Hardin, E. B. Saff, and J. T. Whitehouse, Quasi-uniformity of minimal weighted energy points, J. Complexity 28 (2012), 177–191.
13.
Zurück zum Zitat A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523–538. A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523–538.
14.
Zurück zum Zitat A. Martinez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov, and E.B. Saff, Asymptotics for minimal discrete Riesz energy on curves in \(R^d\), Canad. J. Math., 56 (2004), 529–552. A. Martinez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov, and E.B. Saff, Asymptotics for minimal discrete Riesz energy on curves in \(R^d\), Canad. J. Math., 56 (2004), 529–552.
15.
Zurück zum Zitat P. Mattila, Geometry of Sets and Measures in Euclidean Space, Cambridge University Press, 1995. P. Mattila, Geometry of Sets and Measures in Euclidean Space, Cambridge University Press, 1995.
16.
Zurück zum Zitat T.W. Melnyk, O. Knop, and W. R. Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited, Canad. J. Chem. 55 (1977), 1745–1761. T.W. Melnyk, O. Knop, and W. R. Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited, Canad. J. Chem. 55 (1977), 1745–1761.
17.
Zurück zum Zitat I.H. Sloan and R.S. Womersley, Extremal systems of points and numerical integration on the sphere, Adv. Comp. Math. 21 (2004), 102–125. I.H. Sloan and R.S. Womersley, Extremal systems of points and numerical integration on the sphere, Adv. Comp. Math. 21 (2004), 102–125.
Metadaten
Titel
Low Complexity Methods For Discretizing Manifolds Via Riesz Energy Minimization
verfasst von
S. V. Borodachov
D. P. Hardin
E. B. Saff
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 6/2014
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-014-9202-3

Weitere Artikel der Ausgabe 6/2014

Foundations of Computational Mathematics 6/2014 Zur Ausgabe

Premium Partner