Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

02.03.2021

Low Mutual Coupling of Microstrip Antenna Array Integrated with Dollar Shaped Resonator

verfasst von: Santimoy Mandal, Chandan Kumar Ghosh

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mutual coupling in an antenna array is caused due to the signal leakage as the conduction current through the metallic part underneath the radiating elements and the surface wave surrounding the substrate along with the radiation leakage. The influence of mutual coupling weakens the array performances like scattering parameter, antenna gain, radiation pattern, antenna efficiency etc. The mutual coupling caused by the radiation leakage can be minimized by using circuit manipulation or by introducing the microstrip resonator of optimized design between the antenna elements. A new technique has been adopted in this paper to reduce the impact of mutual coupling by introducing a simple microstrip resonator of dollar symbol between the microstrip antenna elements. Suitably designed and proper placement of resonator structure can improve the effect of mutual coupling by suppressing surface wave propagation of a particular frequency range. It has been observed that the proposed structure produces sufficient suppression of electromagnetic coupling having a reduction of more than 43 dB at the designed frequency of 5.75 GHz. An array of four radiating elements has been designed for improving the gain of the antenna.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken, NJ: Wiley Interscience. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken, NJ: Wiley Interscience.
2.
Zurück zum Zitat Rajo-Iglesias, E., Quevedo-Teruel, O., & Incla´n-Sa´nchez, L. . (2008). Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate. IEEE Transactions on Antennas and Propagation, 56(6), 1648.CrossRef Rajo-Iglesias, E., Quevedo-Teruel, O., & Incla´n-Sa´nchez, L. . (2008). Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate. IEEE Transactions on Antennas and Propagation, 56(6), 1648.CrossRef
3.
Zurück zum Zitat Farahani, H., Veysi, M., Kamyab, M., & Tadjalli, A. (2010). Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas and Wireless Propagation Letters, 9, 57–59.CrossRef Farahani, H., Veysi, M., Kamyab, M., & Tadjalli, A. (2010). Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas and Wireless Propagation Letters, 9, 57–59.CrossRef
4.
Zurück zum Zitat Expósito, Gonzalo, Fernández, J.M., Padilla, P. and Sierra-Castaner, M. (2011). New EBG solutions for mutual coupling reduction. Proceedings of the Sixth European Conference on Antennas and Propagations. pp. 2841–2844. Expósito, Gonzalo, Fernández, J.M., Padilla, P. and Sierra-Castaner, M. (2011). New EBG solutions for mutual coupling reduction. Proceedings of the Sixth European Conference on Antennas and Propagations. pp. 2841–2844.
5.
Zurück zum Zitat Zhu, F. G., Xu, J. D., & Xu, Q. (2009). Reduction of mutual coupling between closely packed antenna elements using defected ground structure. Electronics Letter, 45, 601–602.CrossRef Zhu, F. G., Xu, J. D., & Xu, Q. (2009). Reduction of mutual coupling between closely packed antenna elements using defected ground structure. Electronics Letter, 45, 601–602.CrossRef
6.
Zurück zum Zitat Guha, D., Biswas, S., Joseph, T., & Sebastian, M. T. (2008). Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas. Electronics Letter, 44, 836–837.CrossRef Guha, D., Biswas, S., Joseph, T., & Sebastian, M. T. (2008). Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas. Electronics Letter, 44, 836–837.CrossRef
7.
Zurück zum Zitat Von, D., Trindade, B. M., Muller, C., Cristina, M., De Castro, F., & Castro, F. C. C. D. (2015). Metamaterial applied to ESPAR antenna for mutual coupling reduction. IEEE Antennas and Wireless Propagation Letters, 14, 430–433.CrossRef Von, D., Trindade, B. M., Muller, C., Cristina, M., De Castro, F., & Castro, F. C. C. D. (2015). Metamaterial applied to ESPAR antenna for mutual coupling reduction. IEEE Antennas and Wireless Propagation Letters, 14, 430–433.CrossRef
8.
Zurück zum Zitat Shafique, M. F., Qamar, Z., Riaz, L., Saleem, R., & Khan, S. A. (2015). Coupling suppression in densely packed microstrip arrays using metamaterial structure. Microwave and Optical Technology Letters, 57(3), 759–763.CrossRef Shafique, M. F., Qamar, Z., Riaz, L., Saleem, R., & Khan, S. A. (2015). Coupling suppression in densely packed microstrip arrays using metamaterial structure. Microwave and Optical Technology Letters, 57(3), 759–763.CrossRef
9.
Zurück zum Zitat Ghosh, C. K., & Moitra, S. (2018). Study of decoupling between patch elements of microstrip array using electromagnetic soft surface. Journal of Electromagnetic Waves and Applications, 32(9), 1126–1135.CrossRef Ghosh, C. K., & Moitra, S. (2018). Study of decoupling between patch elements of microstrip array using electromagnetic soft surface. Journal of Electromagnetic Waves and Applications, 32(9), 1126–1135.CrossRef
10.
Zurück zum Zitat Beiranvand, E., Afsahy, M., & Sharbati, V. (2017). Reduction of the mutual coupling in patch antenna arrays based on EBG by using a planar frequency-selective surface structure. International Journal of Microwave and Wireless Technologies, 9(2), 349–355.CrossRef Beiranvand, E., Afsahy, M., & Sharbati, V. (2017). Reduction of the mutual coupling in patch antenna arrays based on EBG by using a planar frequency-selective surface structure. International Journal of Microwave and Wireless Technologies, 9(2), 349–355.CrossRef
11.
Zurück zum Zitat Buell, K., Mosallaei, H., & Sarabandi, K. (2007). Metamaterial insulator enabled super directive array. IEEE Transactions on Antennas and Propagation, 55(4), 1074–1085.CrossRef Buell, K., Mosallaei, H., & Sarabandi, K. (2007). Metamaterial insulator enabled super directive array. IEEE Transactions on Antennas and Propagation, 55(4), 1074–1085.CrossRef
12.
Zurück zum Zitat Suwailam, M. M. B. O., Siddiqui, F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas Wireless Propagation Letters, 9, 876–878.CrossRef Suwailam, M. M. B. O., Siddiqui, F., & Ramahi, O. M. (2010). Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas Wireless Propagation Letters, 9, 876–878.CrossRef
13.
Zurück zum Zitat Aghdam, S. A., Bagby, J., & Pla, R. J. (2016). Mutual coupling reduction of closely spaced MIMO antenna based on electric resonator. Progress In Electromagnetics Research Letters, 64, 1–6.CrossRef Aghdam, S. A., Bagby, J., & Pla, R. J. (2016). Mutual coupling reduction of closely spaced MIMO antenna based on electric resonator. Progress In Electromagnetics Research Letters, 64, 1–6.CrossRef
14.
Zurück zum Zitat Ghosh, C. K., Mandal, B., & Parui, S. K. (2014). Mutual coupling reduction of a dual-frequency microstrip antenna array by using U-shaped DGS and inverted U-shaped microstrip resonator. Progress In Electromagnetics Research C, 48, 61–68.CrossRef Ghosh, C. K., Mandal, B., & Parui, S. K. (2014). Mutual coupling reduction of a dual-frequency microstrip antenna array by using U-shaped DGS and inverted U-shaped microstrip resonator. Progress In Electromagnetics Research C, 48, 61–68.CrossRef
15.
Zurück zum Zitat Ghosh, J., Ghosal, S., Mitra, D., & Bhadra Chaudhuri, S. R. (2016). Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Progress In Electromagnetics Research Letters, 59, 115–122.CrossRef Ghosh, J., Ghosal, S., Mitra, D., & Bhadra Chaudhuri, S. R. (2016). Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Progress In Electromagnetics Research Letters, 59, 115–122.CrossRef
16.
Zurück zum Zitat Ghosh, C. K., & Parui, S. K. (2013). Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section. Microwave and Optical Technology Letters, 55(11), 2544–2549.CrossRef Ghosh, C. K., & Parui, S. K. (2013). Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section. Microwave and Optical Technology Letters, 55(11), 2544–2549.CrossRef
17.
Zurück zum Zitat Farsi, S., Schreurs, D., & Nauwelaers, B. (2012). Mutual coupling reduction of planar antenna by using a simple microstrip u-section. IEEE Antennas and Wireless Propagation Letters, 11, 1501–1503.CrossRef Farsi, S., Schreurs, D., & Nauwelaers, B. (2012). Mutual coupling reduction of planar antenna by using a simple microstrip u-section. IEEE Antennas and Wireless Propagation Letters, 11, 1501–1503.CrossRef
18.
Zurück zum Zitat Naser-Moghadasi, M., Ahmadian, R., Mansouri, Z., Zarrabi, B., & Ferdows and Rahimi, Maryam. . (2014). Compact EBG structures for reduction of mutual coupling in patch antenna MIMO arrays. Progress In Electromagnetics Research C, 53, 145–154.CrossRef Naser-Moghadasi, M., Ahmadian, R., Mansouri, Z., Zarrabi, B., & Ferdows and Rahimi, Maryam. . (2014). Compact EBG structures for reduction of mutual coupling in patch antenna MIMO arrays. Progress In Electromagnetics Research C, 53, 145–154.CrossRef
20.
Zurück zum Zitat Jiang, Tao, Jiao, Tianqi and Li, Yingsong. (2016). Array Mutual Coupling Reduction Using L-Loading, E-Shaped Electromagnetic Band Gap Structures. International Journal of Antennas and Propagation.Volume 2016, Article ID 6731014, 9 pages. Jiang, Tao, Jiao, Tianqi and Li, Yingsong. (2016). Array Mutual Coupling Reduction Using L-Loading, E-Shaped Electromagnetic Band Gap Structures. International Journal of Antennas and Propagation.Volume 2016, Article ID 6731014, 9 pages.
21.
Zurück zum Zitat Yu, Y., Lijun, Y., Xiaoya L., & Zhaokai, G. (2016). Mutual coupling reduction of dual-frequency patch antenna arrays. ACES JOURNAL, Vol. 31, No.9. Yu, Y., Lijun, Y., Xiaoya L., & Zhaokai, G. (2016). Mutual coupling reduction of dual-frequency patch antenna arrays. ACES JOURNAL, Vol. 31, No.9.
22.
Zurück zum Zitat Kaabala, A., El halaouia, M., Ahyoud, S., & Asselman, A. (2015). A low mutual coupling design for array microstrip antennas integrated with electromagnetic band-gap structure. 9th International Conference Interdisciplinary in Engineering, Inter-Eng 8–9 October 2015, Tirgu-Mures, Romania. Kaabala, A., El halaouia, M., Ahyoud, S., & Asselman, A. (2015). A low mutual coupling design for array microstrip antennas integrated with electromagnetic band-gap structure. 9th International Conference Interdisciplinary in Engineering, Inter-Eng 8–9 October 2015, Tirgu-Mures, Romania.
23.
Zurück zum Zitat Ghosh, C. K. (2016). A compact 4-channel microstrip MIMO antenna with reduced mutual coupling. International Journal of Electronics and Communication. (AEÜ), 70, 873–879.CrossRef Ghosh, C. K. (2016). A compact 4-channel microstrip MIMO antenna with reduced mutual coupling. International Journal of Electronics and Communication. (AEÜ), 70, 873–879.CrossRef
24.
Zurück zum Zitat Vishvaksenan, K. S., Mithra, K., Kalaiarasan, R., & Raj, K. S. (2017). Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators. IEEE Antennas and Wireless Propagation Letters, 16, 2146–2149.CrossRef Vishvaksenan, K. S., Mithra, K., Kalaiarasan, R., & Raj, K. S. (2017). Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators. IEEE Antennas and Wireless Propagation Letters, 16, 2146–2149.CrossRef
26.
Zurück zum Zitat Roy, S., & Chakraborty, U. (2020). Mutual coupling reduction in a multi-band mimo antenna using meta-inspired decoupling network. Wireless Personal Communication, 114, 3231–3246.CrossRef Roy, S., & Chakraborty, U. (2020). Mutual coupling reduction in a multi-band mimo antenna using meta-inspired decoupling network. Wireless Personal Communication, 114, 3231–3246.CrossRef
27.
Zurück zum Zitat Nadeem, I., & Choi, D. (2019). Study on mutual coupling reduction technique for MIMO antennas. IEEE Access, 7, 563–586.CrossRef Nadeem, I., & Choi, D. (2019). Study on mutual coupling reduction technique for MIMO antennas. IEEE Access, 7, 563–586.CrossRef
Metadaten
Titel
Low Mutual Coupling of Microstrip Antenna Array Integrated with Dollar Shaped Resonator
verfasst von
Santimoy Mandal
Chandan Kumar Ghosh
Publikationsdatum
02.03.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08237-1

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt