Skip to main content

2016 | OriginalPaper | Buchkapitel

Low-Power Biomedical Interfaces

verfasst von : Refet Firat Yazicioglu, Jiawei Xu, Rachit Mohan, Bogdan Raducanu, Nick Van Helleputte, Carolina More Lopez, Srinjoy Mitra, Julia Pettine, Roland Van Wegberg, Mario Konijnenburg

Erschienen in: Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The design of energy efficient instrumentation has long been fueled by the mobile applications where low-power sensors and sensor interfaces have been used for continuous measurement of inertial measurements and environmental parameters. On the other hand, during the last decade, together with the increasing interest on continuous measurements of physiological and neural signals, new generations of energy efficient instrumentation amplifiers have emerged. This paper presents the state of the art of instrumentation architectures in the field of biomedical instrumentation and discusses their use in wearable and implantable biomedical signal acquisition systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Webster J (1992) Medical instrumentation: application and design, 2nd edn. Houghton Mifflin, Boston Webster J (1992) Medical instrumentation: application and design, 2nd edn. Houghton Mifflin, Boston
2.
Zurück zum Zitat IEC60601-1 (2005) Medical electrical equipment—part 1: general requirements for basic safety and essential performance. International Standard IEC60601-1 (2005) Medical electrical equipment—part 1: general requirements for basic safety and essential performance. International Standard
3.
Zurück zum Zitat Texas Instruments ADS1292R (2012) Low-power, 8-channel, 24-bit AFE for biopotential measurements. SBAS502B Texas Instruments ADS1292R (2012) Low-power, 8-channel, 24-bit AFE for biopotential measurements. SBAS502B
4.
Zurück zum Zitat Van Helleputte N, Kim S, Kim H, Kim JP, Van Hoof C, Yazicioglu RF (2012) A 160μA biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans Biomed Circuits Syst 6(6):552–561CrossRef Van Helleputte N, Kim S, Kim H, Kim JP, Van Hoof C, Yazicioglu RF (2012) A 160μA biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans Biomed Circuits Syst 6(6):552–561CrossRef
5.
Zurück zum Zitat Yazicioglu RF, Merken P, Puers R, Van Hoof C (2008) A 200μW eight-channel acquisition ASIC for ambulatory EEG systems. In: Digest ISSCC, pp 164–603 Yazicioglu RF, Merken P, Puers R, Van Hoof C (2008) A 200μW eight-channel acquisition ASIC for ambulatory EEG systems. In: Digest ISSCC, pp 164–603
6.
Zurück zum Zitat Fan Q, Sebastiano F, Huijsing JH, Makinwa KAA (2011) A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J Solid-State Circuits 46(7):1534–1543CrossRef Fan Q, Sebastiano F, Huijsing JH, Makinwa KAA (2011) A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J Solid-State Circuits 46(7):1534–1543CrossRef
7.
Zurück zum Zitat Zou X, Liew W-S, Yao L, Lian Y (2010) A 1V 22μW 32-channel implantable EEG recording IC. In: IEEE international solid-state circuits conference, pp 126–127 Zou X, Liew W-S, Yao L, Lian Y (2010) A 1V 22μW 32-channel implantable EEG recording IC. In: IEEE international solid-state circuits conference, pp 126–127
8.
Zurück zum Zitat Qian C, Parramon J, Sanchez-Sinencio E (2011) A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J Solid-State Circuits 46(6):1392–1405CrossRef Qian C, Parramon J, Sanchez-Sinencio E (2011) A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J Solid-State Circuits 46(6):1392–1405CrossRef
9.
Zurück zum Zitat Denison T, Consoer K, Kelly A, Hachenburg A, Santa W (2007) A 2.2μW 94nV/√Hz, chopper-stabilized instrumentation amplifier for EEG detection in chronic implants. In: ISSCC, pp 162–594 Denison T, Consoer K, Kelly A, Hachenburg A, Santa W (2007) A 2.2μW 94nV/√Hz, chopper-stabilized instrumentation amplifier for EEG detection in chronic implants. In: ISSCC, pp 162–594
10.
Zurück zum Zitat Xu J, Yazicioglu RF et al (2011) A 160μW 8-channel active electrode system for EEG monitoring. IEEE Trans Biomed Circuits Syst 5(6):555–567CrossRef Xu J, Yazicioglu RF et al (2011) A 160μW 8-channel active electrode system for EEG monitoring. IEEE Trans Biomed Circuits Syst 5(6):555–567CrossRef
11.
Zurück zum Zitat Van Helleputte N, Konijnenburg M, Pettine J, Jee D-W, Kim H, Morgado A, Van Wegberg R, Torfs T, Mohan R, Breeschoten A, de Groot AH, Van Hoof C, Yazicioglu RF (2015) A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J Solid-State Circuits 50(1):230–244CrossRef Van Helleputte N, Konijnenburg M, Pettine J, Jee D-W, Kim H, Morgado A, Van Wegberg R, Torfs T, Mohan R, Breeschoten A, de Groot AH, Van Hoof C, Yazicioglu RF (2015) A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J Solid-State Circuits 50(1):230–244CrossRef
12.
Zurück zum Zitat Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circuits 38(6):958–965CrossRef Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circuits 38(6):958–965CrossRef
13.
Zurück zum Zitat Xu J et al (2013) Measurement and analysis of current noise in chopper amplifiers. IEEE J Solid-State Circuits 48(7):1575–1584CrossRef Xu J et al (2013) Measurement and analysis of current noise in chopper amplifiers. IEEE J Solid-State Circuits 48(7):1575–1584CrossRef
14.
Zurück zum Zitat Guermandi M, Cardu R, et al (2011) Active electrode IC combining EEG, electrical impedance tomography, continuous contact impedance measurement and power supply on a single wire. In: Proceedings of ESSCIRC, pp 335–338 Guermandi M, Cardu R, et al (2011) Active electrode IC combining EEG, electrical impedance tomography, continuous contact impedance measurement and power supply on a single wire. In: Proceedings of ESSCIRC, pp 335–338
15.
Zurück zum Zitat Xu J, Mitra S, Matsumoto A, Patki S, Makinwa KAA, Van Hoof C, Yazicioglu RF (2014) A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J Solid-State Circuits 49(9):2005–2016CrossRef Xu J, Mitra S, Matsumoto A, Patki S, Makinwa KAA, Van Hoof C, Yazicioglu RF (2014) A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J Solid-State Circuits 49(9):2005–2016CrossRef
16.
Zurück zum Zitat Xu J, Büsze B, Kim H, Makinwa KAA, Van Hoof C, Yazicioglu RF (2014) A 60nv/rt(Hz) 15-channel digital active electrode system for portable biopotential monitoring. In: Digest ISSCC, pp 424–425 Xu J, Büsze B, Kim H, Makinwa KAA, Van Hoof C, Yazicioglu RF (2014) A 60nv/rt(Hz) 15-channel digital active electrode system for portable biopotential monitoring. In: Digest ISSCC, pp 424–425
17.
Zurück zum Zitat Yazicioglu RF, Merken P et al (2007) A 60μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110CrossRef Yazicioglu RF, Merken P et al (2007) A 60μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110CrossRef
18.
Zurück zum Zitat Muller R et al (2012) A 0.013 mm2 2.5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid-State Circuits 47(1):232–243CrossRef Muller R et al (2012) A 0.013 mm2 2.5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid-State Circuits 47(1):232–243CrossRef
20.
Zurück zum Zitat Harrison RR (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96(7):1203–1216CrossRef Harrison RR (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96(7):1203–1216CrossRef
21.
Zurück zum Zitat Gosselin B, Ayoub AE, Roy J-F, Sawan M, Lepore F, Chaudhuri A, Guitton D (2009) A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans Biomed Circuits Syst 3(3):129–141CrossRef Gosselin B, Ayoub AE, Roy J-F, Sawan M, Lepore F, Chaudhuri A, Guitton D (2009) A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans Biomed Circuits Syst 3(3):129–141CrossRef
22.
Zurück zum Zitat Chae M-S, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321CrossRef Chae M-S, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321CrossRef
23.
Zurück zum Zitat Shahrokhi F, Abdelhalim K, Serletis D, Carlen PL, Genov R (2010) The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans Biomed Circuits Syst 4(3):149–161CrossRef Shahrokhi F, Abdelhalim K, Serletis D, Carlen PL, Genov R (2010) The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans Biomed Circuits Syst 4(3):149–161CrossRef
24.
Zurück zum Zitat Gao H, Walker RM, Nuyujukian P, Makinwa KAA, Shenoy KV, Murmann B, Meng TH (2012) HermesE: a 96-channel full data rate direct neural interface in 0.13 μm CMOS. IEEE J Solid-State Circuits 47(4):1043–1055CrossRef Gao H, Walker RM, Nuyujukian P, Makinwa KAA, Shenoy KV, Murmann B, Meng TH (2012) HermesE: a 96-channel full data rate direct neural interface in 0.13 μm CMOS. IEEE J Solid-State Circuits 47(4):1043–1055CrossRef
25.
Zurück zum Zitat Biederman W, Yeager DJ, Narevsky N, Koralek AC, Carmena JM, Alon E, Rabaey JM (2013) A fully-integrated, miniaturized (0.125 mm2) 10.5 μW wireless neural sensor. IEEE J Solid-State Circuits 48(4):960–970CrossRef Biederman W, Yeager DJ, Narevsky N, Koralek AC, Carmena JM, Alon E, Rabaey JM (2013) A fully-integrated, miniaturized (0.125 mm2) 10.5 μW wireless neural sensor. IEEE J Solid-State Circuits 48(4):960–970CrossRef
26.
Zurück zum Zitat Lopez CM, Andrei A, Mitra S, Welkenhuysen M, Eberle W, Bartic C, Puers R, Yazicioglu RF, Gielen G (2014) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid-State Circuits 49(1):248–261CrossRef Lopez CM, Andrei A, Mitra S, Welkenhuysen M, Eberle W, Bartic C, Puers R, Yazicioglu RF, Gielen G (2014) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid-State Circuits 49(1):248–261CrossRef
27.
Zurück zum Zitat Tung-Chien Chen, Kuanfu Chen, Zhi Yang, Cockerham, K., Wentai Liu (2009), A biomedical multiprocessor SoC for closed-loop neuroprosthetic applications, IEEE International Solid-State Circuits Conference (ISSCC), pp. 434--435, 435 Tung-Chien Chen, Kuanfu Chen, Zhi Yang, Cockerham, K., Wentai Liu (2009), A biomedical multiprocessor SoC for closed-loop neuroprosthetic applications, IEEE International Solid-State Circuits Conference (ISSCC), pp. 434--435, 435
28.
Zurück zum Zitat Jochum T, Denison T, et al (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6 Jochum T, Denison T, et al (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6
29.
Zurück zum Zitat Franks W, Schenker I, Schmutz P, Hierlemann A (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302CrossRef Franks W, Schenker I, Schmutz P, Hierlemann A (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302CrossRef
30.
Zurück zum Zitat Majidzadeh V, Leblebici Y (2009) A micropower neural recording amplifier with improved noise efficiency factor. In: European conference circuit theory and design (ECCTD), pp319–322 Majidzadeh V, Leblebici Y (2009) A micropower neural recording amplifier with improved noise efficiency factor. In: European conference circuit theory and design (ECCTD), pp319–322
31.
Zurück zum Zitat Muller J, Livi P, Chen Y (2013) Conferring flexibility and reconfigurability to a 26,400 microelectrode CMOS array for high throughput neural recordings. In: Solid-state sensors, actuators and microsystems transducers, pp 744–747 Muller J, Livi P, Chen Y (2013) Conferring flexibility and reconfigurability to a 26,400 microelectrode CMOS array for high throughput neural recordings. In: Solid-state sensors, actuators and microsystems transducers, pp 744–747
32.
Zurück zum Zitat Eversmann B, Jenkner M, Hofmann F, Paulus C (2003) A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid-State Circuits 38(12):2306–2317CrossRef Eversmann B, Jenkner M, Hofmann F, Paulus C (2003) A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid-State Circuits 38(12):2306–2317CrossRef
33.
Zurück zum Zitat Lei N, MacLean J, Yuste R (2008) A 256×256 CMOS microelectrode array for extracellular neural stimulation of acute brain slices. In: ISSCC digest of technical papers, pp 148–603 Lei N, MacLean J, Yuste R (2008) A 256×256 CMOS microelectrode array for extracellular neural stimulation of acute brain slices. In: ISSCC digest of technical papers, pp 148–603
34.
Zurück zum Zitat Bagheri AGS, Salam M, Velazquez J (2012) 1024-channel-scalable wireless neuromonitoring and neurostimulation rodent headset with nanotextured flexible microelectrodes. In: IEEE biomedical circuits and systems conference (BioCAS), pp 184–187 Bagheri AGS, Salam M, Velazquez J (2012) 1024-channel-scalable wireless neuromonitoring and neurostimulation rodent headset with nanotextured flexible microelectrodes. In: IEEE biomedical circuits and systems conference (BioCAS), pp 184–187
35.
Zurück zum Zitat Liu L, Yao L, Zou X, Goh WL (2013) Neural recording front-end IC using action potential detection and analog buffer with digital delay for data compression. Conf Proc IEEE Eng Med Biol Soc 2013:747–750 Liu L, Yao L, Zou X, Goh WL (2013) Neural recording front-end IC using action potential detection and analog buffer with digital delay for data compression. Conf Proc IEEE Eng Med Biol Soc 2013:747–750
36.
Zurück zum Zitat Stevenson IH, Kording KP (2011) How advances in neural recording affect data analysis. Nat Neurosci 14:139–142CrossRef Stevenson IH, Kording KP (2011) How advances in neural recording affect data analysis. Nat Neurosci 14:139–142CrossRef
37.
Zurück zum Zitat Harrison R, Watkins P, Kier R, Lovejoy R (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid-State Circuits 42(1):123–133CrossRef Harrison R, Watkins P, Kier R, Lovejoy R (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid-State Circuits 42(1):123–133CrossRef
38.
Zurück zum Zitat Perlin GSA, Wise K (2006) Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems. Conf Proc IEEE Eng Med Biol Soc 1:2982–2985CrossRef Perlin GSA, Wise K (2006) Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems. Conf Proc IEEE Eng Med Biol Soc 1:2982–2985CrossRef
39.
Zurück zum Zitat Torfs T et al (2011) Two-dimensional multi-channel neural probes with electronic depth control. IEEE Trans Biomed Circuits Syst 5(5):403–412CrossRef Torfs T et al (2011) Two-dimensional multi-channel neural probes with electronic depth control. IEEE Trans Biomed Circuits Syst 5(5):403–412CrossRef
40.
Zurück zum Zitat Olsson R, Wise K (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. In: Solid-state circuits conference, 2005. Digest of technical papers (ISSCC), pp 558–559 Olsson R, Wise K (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. In: Solid-state circuits conference, 2005. Digest of technical papers (ISSCC), pp 558–559
41.
Zurück zum Zitat Olsson RH III, Buhl DL, Sirota AM, Buzsaki G, Wise KD (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Biomed Eng 52(7):1303–1311CrossRef Olsson RH III, Buhl DL, Sirota AM, Buzsaki G, Wise KD (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Biomed Eng 52(7):1303–1311CrossRef
42.
Zurück zum Zitat Steyaert MSJ, Sansen WMC (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits 22(6):1163–1168CrossRef Steyaert MSJ, Sansen WMC (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits 22(6):1163–1168CrossRef
43.
Zurück zum Zitat Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circuits 45(4):804–816CrossRef Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circuits 45(4):804–816CrossRef
44.
Zurück zum Zitat Ashouei M, Hulzink J, Konijnenburg M, Zhou J, Duarte F, Breeschoten A, Huisken J, Stuyt J, de Groot H, Barat F, David J, Van Ginderdeuren J (2011) A voltage-scalable biomedical signal processor running ECG using 13pJ/cycle at 1MHz and 0.4V. In: Solid-state circuits conference digest of technical papers (ISSCC), 2011 IEEE international, pp 332–334 Ashouei M, Hulzink J, Konijnenburg M, Zhou J, Duarte F, Breeschoten A, Huisken J, Stuyt J, de Groot H, Barat F, David J, Van Ginderdeuren J (2011) A voltage-scalable biomedical signal processor running ECG using 13pJ/cycle at 1MHz and 0.4V. In: Solid-state circuits conference digest of technical papers (ISSCC), 2011 IEEE international, pp 332–334
45.
Zurück zum Zitat Annema A-J, Nauta B, van Langevelde R, Tuinhout H (2005) Analog circuits in ultra-deep-submicron CMOS. IEEE J Solid-State Circuits 40(1):132–143CrossRef Annema A-J, Nauta B, van Langevelde R, Tuinhout H (2005) Analog circuits in ultra-deep-submicron CMOS. IEEE J Solid-State Circuits 40(1):132–143CrossRef
46.
Zurück zum Zitat Han D, Zheng Y, Rajkumar R, Dawe G, Je M (2013) A 0.45V 100-channel neural-recording IC with sub-μW/channel consumption in 0.18μm CMOS. In: Solid-state circuits conference digest of technical papers (ISSCC), 2013 IEEE international, pp 290–291 Han D, Zheng Y, Rajkumar R, Dawe G, Je M (2013) A 0.45V 100-channel neural-recording IC with sub-μW/channel consumption in 0.18μm CMOS. In: Solid-state circuits conference digest of technical papers (ISSCC), 2013 IEEE international, pp 290–291
47.
Zurück zum Zitat Mohan R, Yan L, Gielen G, Van Hoof C, Yazicioglu RF (2014) 0.35 V time-domain-based instrumentation amplifier. Electron Lett 50(21):1513–1514CrossRef Mohan R, Yan L, Gielen G, Van Hoof C, Yazicioglu RF (2014) 0.35 V time-domain-based instrumentation amplifier. Electron Lett 50(21):1513–1514CrossRef
48.
Zurück zum Zitat Ng KA, Xu YP (2012) A compact, low input capacitance neural recording amplifier with C in/gain of 20fF.V/V. In: Biomedical circuits and systems conference (BioCAS), 2012 IEEE, pp 328–331 Ng KA, Xu YP (2012) A compact, low input capacitance neural recording amplifier with C in/gain of 20fF.V/V. In: Biomedical circuits and systems conference (BioCAS), 2012 IEEE, pp 328–331
49.
Zurück zum Zitat De Smedt V, Gielen G, Dehaene W (2013) A 40nm-CMOS, 18 μW, temperature and supply voltage independent sensor interface for RFID tags. In: Solid-state circuits conference (A-SSCC), 2013 IEEE Asian, pp 113–116 De Smedt V, Gielen G, Dehaene W (2013) A 40nm-CMOS, 18 μW, temperature and supply voltage independent sensor interface for RFID tags. In: Solid-state circuits conference (A-SSCC), 2013 IEEE Asian, pp 113–116
50.
Zurück zum Zitat Grimnes S, Martinsen OG (2015) Bioimpedance and bioelectricity basics, 3rd edn. Elsevier, Amsterdam Grimnes S, Martinsen OG (2015) Bioimpedance and bioelectricity basics, 3rd edn. Elsevier, Amsterdam
51.
Zurück zum Zitat Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147CrossRef Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147CrossRef
Metadaten
Titel
Low-Power Biomedical Interfaces
verfasst von
Refet Firat Yazicioglu
Jiawei Xu
Rachit Mohan
Bogdan Raducanu
Nick Van Helleputte
Carolina More Lopez
Srinjoy Mitra
Julia Pettine
Roland Van Wegberg
Mario Konijnenburg
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-21185-5_5

Neuer Inhalt