Skip to main content

2019 | OriginalPaper | Buchkapitel

Low Power Microphone Front-Ends

verfasst von : Lorenzo Crespi, Claudio De Berti, Brian Friend, Piero Malcovati, Andrea Baschirotto

Erschienen in: Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Audio interfaces are among the most popular interfaces between man and machines. Such interfaces are based on microphones, whose efficiency expressed in terms of performance/power consumption is becoming one of the crucial parameters for the success on the market. In this chapter, the main specifications of typical microphone interfaces are illustrated to exhibit the advances in their development toward the maximization of their efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
To achieve 20 Hz cutoff frequency with a 10-kΩ input resistance, the AC-coupling caps must be of the order of 1 μF. While 1-μF ceramic capacitors are widely available even in very small form factor, their large voltage coefficient can create a significant nonlinearity at low frequencies. For this reason, it is strongly preferable to utilize capacitors in the order of 10 nF, which requires a preamplifier input impedance in the order of 1 MΩ.
 
Literatur
1.
Zurück zum Zitat Hsu YC, et al. Issues in path toward integrated acoustic sensor system on chip. In: Proceedings of IEEE sensors; Lecce, Italy; 2008. p. 585–8. Hsu YC, et al. Issues in path toward integrated acoustic sensor system on chip. In: Proceedings of IEEE sensors; Lecce, Italy; 2008. p. 585–8.
2.
Zurück zum Zitat Malcovati P, Maloberti F. Interface circuitry and microsystems. In: Korvink J, Paul O, editors. MEMS: a practical guide to design, analysis and applications. Dordrecht: Springer; 2005. p. 901–42. Malcovati P, Maloberti F. Interface circuitry and microsystems. In: Korvink J, Paul O, editors. MEMS: a practical guide to design, analysis and applications. Dordrecht: Springer; 2005. p. 901–42.
3.
Zurück zum Zitat Bajdechi O, Huijsing JH. A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE J Solid-State Circuits. 2002;37:279–85.CrossRef Bajdechi O, Huijsing JH. A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE J Solid-State Circuits. 2002;37:279–85.CrossRef
4.
Zurück zum Zitat Chiang CT, Huang YC. A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE IMTC; Singapore; 2009. p. 1055–8. Chiang CT, Huang YC. A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE IMTC; Singapore; 2009. p. 1055–8.
5.
Zurück zum Zitat Pernici S, et al. Fully integrated voiceband codec in a standard digital CMOS technology. IEEE J Solid-State Circuits. 2004;39:1331–4.CrossRef Pernici S, et al. Fully integrated voiceband codec in a standard digital CMOS technology. IEEE J Solid-State Circuits. 2004;39:1331–4.CrossRef
6.
Zurück zum Zitat van der Zwan EJ, Dijkmans EC. A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circuits. 1996;31:1873–80.CrossRef van der Zwan EJ, Dijkmans EC. A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circuits. 1996;31:1873–80.CrossRef
7.
Zurück zum Zitat Zare-Hoseini H, et al. A low-power continuous-time ΔΣ modulator for electret microphone applications. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4. Zare-Hoseini H, et al. A low-power continuous-time ΔΣ modulator for electret microphone applications. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4.
8.
Zurück zum Zitat Jawed SA, et al. A 828-mW 1.8-V 80-dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of ESSCIRC; Edinburgh, UK; 2008. p. 442–5. Jawed SA, et al. A 828-mW 1.8-V 80-dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of ESSCIRC; Edinburgh, UK; 2008. p. 442–5.
9.
Zurück zum Zitat Picolli L, et al. A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones. Analog Integr Circuits Sig Process. 2011;66:223–33.CrossRef Picolli L, et al. A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones. Analog Integr Circuits Sig Process. 2011;66:223–33.CrossRef
10.
Zurück zum Zitat Le HB, et al. A regulator-free 84-dB DR audio-band ADC for compact digital microphones. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4. Le HB, et al. A regulator-free 84-dB DR audio-band ADC for compact digital microphones. In: Proceedings of IEEE ASSCC; Beijing, China; 2010. p. 1–4.
11.
Zurück zum Zitat Citakovic J, et al. A compact CMOS MEMS microphone with 66-dB SNR. In: IEEE ISSCC digest of technical papers; San Francisco, USA; 2009. p. 350–1. Citakovic J, et al. A compact CMOS MEMS microphone with 66-dB SNR. In: IEEE ISSCC digest of technical papers; San Francisco, USA; 2009. p. 350–1.
12.
Zurück zum Zitat Weigold JW, et al. A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE MEMS; Istanbul, Turkey; 2006. p. 86–9. Weigold JW, et al. A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE MEMS; Istanbul, Turkey; 2006. p. 86–9.
13.
Zurück zum Zitat Scheeper PR, et al. A review of silicon microphones. Sensors Actuators A. 1994;44(1):1–11.CrossRef Scheeper PR, et al. A review of silicon microphones. Sensors Actuators A. 1994;44(1):1–11.CrossRef
14.
Zurück zum Zitat Bergqvist J, Gobet J. Capacitive microphone with a surface micromachined backplate using electroplating technology. J Microelectromech Syst. 1994;3(2):69–75.CrossRef Bergqvist J, Gobet J. Capacitive microphone with a surface micromachined backplate using electroplating technology. J Microelectromech Syst. 1994;3(2):69–75.CrossRef
15.
Zurück zum Zitat Kasai T, et al. Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range. In: Proceedings of IEEE MEMS; Cancun, Mexico; 2011. p. 605–8. Kasai T, et al. Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range. In: Proceedings of IEEE MEMS; Cancun, Mexico; 2011. p. 605–8.
16.
Zurück zum Zitat Leinenbach C, et al. A new capacitive type MEMS microphone. In: Proceedings of IEEE MEMS; Wanchai, Hong Kong, China; 2010. p. 659–62. Leinenbach C, et al. A new capacitive type MEMS microphone. In: Proceedings of IEEE MEMS; Wanchai, Hong Kong, China; 2010. p. 659–62.
17.
Zurück zum Zitat Martin DT, et al. A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J Microelectromech Syst. 2007;16(6):1289–302.CrossRef Martin DT, et al. A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J Microelectromech Syst. 2007;16(6):1289–302.CrossRef
18.
Zurück zum Zitat Zou QB, et al. Design and fabrication of silicon condenser microphone using corrugated diaphragm technique. J Microelectromech Syst. 1996;5(3):197–204.CrossRef Zou QB, et al. Design and fabrication of silicon condenser microphone using corrugated diaphragm technique. J Microelectromech Syst. 1996;5(3):197–204.CrossRef
19.
Zurück zum Zitat InvenSense Application Note AN-1003. Recommendations for mounting and connecting InvenSense MEMS microphones, Online. InvenSense Application Note AN-1003. Recommendations for mounting and connecting InvenSense MEMS microphones, Online.
20.
Zurück zum Zitat Knowles Application Note AN-16. SiSonic design guide, Online. Knowles Application Note AN-16. SiSonic design guide, Online.
21.
Zurück zum Zitat Nicollini G, et al. A high-performance analog front-end 14-bit CODEC for 2.7-V digital cellular phones. IEEE J Solid-State Circuits. 1998;33:1158–67.CrossRef Nicollini G, et al. A high-performance analog front-end 14-bit CODEC for 2.7-V digital cellular phones. IEEE J Solid-State Circuits. 1998;33:1158–67.CrossRef
22.
Zurück zum Zitat Barbieri A, Nicollini G. 100+ dB A-weighted SNR microphone preamplifier with on-chip decoupling capacitors. IEEE J Solid-State Circuits. 2012;47:2737–50.CrossRef Barbieri A, Nicollini G. 100+ dB A-weighted SNR microphone preamplifier with on-chip decoupling capacitors. IEEE J Solid-State Circuits. 2012;47:2737–50.CrossRef
23.
Zurück zum Zitat Croce M, et al. Cap-less audio preamplifiers for silicon microphones. In: Proceedings of IEEE sensors, Orlando, FL, USA; 2016. p. 943–5. Croce M, et al. Cap-less audio preamplifiers for silicon microphones. In: Proceedings of IEEE sensors, Orlando, FL, USA; 2016. p. 943–5.
24.
Zurück zum Zitat Croce M, et al. MEMS microphone fully-integrated CMOS cap-less preamplifiers. In: Proceedings of IEEE PRIME, Giardini Naxos, Taormina, Italy; 2017. p. 37–40. Croce M, et al. MEMS microphone fully-integrated CMOS cap-less preamplifiers. In: Proceedings of IEEE PRIME, Giardini Naxos, Taormina, Italy; 2017. p. 37–40.
25.
Zurück zum Zitat Jiang X, et al. A low-power, high-fidelity stereo audio CODEC in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2012;47:1221–31.CrossRef Jiang X, et al. A low-power, high-fidelity stereo audio CODEC in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2012;47:1221–31.CrossRef
26.
Zurück zum Zitat Du D, Odame KM. A bandwidth-adaptive preamplifier. IEEE J Solid-State Circuits. 2013;48:2142–53.CrossRef Du D, Odame KM. A bandwidth-adaptive preamplifier. IEEE J Solid-State Circuits. 2013;48:2142–53.CrossRef
27.
Zurück zum Zitat Tsividis Y, et al. Internally varying analog circuits minimize power dissipation. IEEE Circuits Device Mag. 2003;19:63–72.CrossRef Tsividis Y, et al. Internally varying analog circuits minimize power dissipation. IEEE Circuits Device Mag. 2003;19:63–72.CrossRef
28.
Zurück zum Zitat De Berti C, et al. A 106-dB A-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones. IEEE J. Solid-State Circuits. 2016;51:1607–18.CrossRef De Berti C, et al. A 106-dB A-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones. IEEE J. Solid-State Circuits. 2016;51:1607–18.CrossRef
30.
Zurück zum Zitat De Berti C, et al. Colored clock jitter model in audio continuous-time ΣΔ modulators. In: Proceedings of IEEE NEWCAS, Grenoble, France; 2015. p. 14B5/1–4. De Berti C, et al. Colored clock jitter model in audio continuous-time ΣΔ modulators. In: Proceedings of IEEE NEWCAS, Grenoble, France; 2015. p. 14B5/1–4.
31.
Zurück zum Zitat Dörrer L, et al. A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2005;40:2416–27.CrossRef Dörrer L, et al. A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-μm CMOS. IEEE J Solid-State Circuits. 2005;40:2416–27.CrossRef
32.
Zurück zum Zitat Nguyen K, et al. A 108-dB SNR, 1.1-mW oversampling audio DAC with a three-level DEM technique. IEEE J Solid-State Circuits. 2008;43:2592–600.CrossRef Nguyen K, et al. A 108-dB SNR, 1.1-mW oversampling audio DAC with a three-level DEM technique. IEEE J Solid-State Circuits. 2008;43:2592–600.CrossRef
33.
Zurück zum Zitat Crespi L., et al. Audio digital-to-analog converter with enhanced dynamic range. US Patent Application No. 62/425,510, 2016. Crespi L., et al. Audio digital-to-analog converter with enhanced dynamic range. US Patent Application No. 62/425,510, 2016.
Metadaten
Titel
Low Power Microphone Front-Ends
verfasst von
Lorenzo Crespi
Claudio De Berti
Brian Friend
Piero Malcovati
Andrea Baschirotto
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-97870-3_17

Neuer Inhalt