Skip to main content

2020 | OriginalPaper | Buchkapitel

Low Reynolds Number Swimming with Slip Boundary Conditions

verfasst von : Hashim Alshehri, Nesreen Althobaiti, Jian Du

Erschienen in: Computational Science – ICCS 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate the classical Taylor’s swimming sheet problem in a viscoelastic fluid, as well as in a mixture of a viscous fluid and a viscoelastic fluid. Extensions of the standard Immersed Boundary (IB) Method are proposed so that the fluid media may satisfy partial slip or free-slip conditions on the moving boundary. Our numerical results indicate that slip may lead to substantial speed enhancement for swimmers in a viscoelastic fluid and in a viscoelastic two-fluid mixture. Under the slip conditions, the speed of locomotion is dependent in a nontrivial way on both the viscosity and elasticity of the fluid media. In a two-fluid mixture with free-slip network, the swimming speed is also significantly affected by the drag coefficient and the network volume fraction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
4.
Zurück zum Zitat Riley, E., Lauga, E.: Small-amplitude swimmers can self-propel faster in viscoelastic fluids. J. Theor. Biol. 382, 345–355 (2015)MathSciNetCrossRef Riley, E., Lauga, E.: Small-amplitude swimmers can self-propel faster in viscoelastic fluids. J. Theor. Biol. 382, 345–355 (2015)MathSciNetCrossRef
5.
Zurück zum Zitat Teran, J., Fauci, L., Shelley, M.: Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104(3), 038101 (2010)CrossRef Teran, J., Fauci, L., Shelley, M.: Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104(3), 038101 (2010)CrossRef
6.
Zurück zum Zitat Shen, X., Arratia, P.: Undulatory Swimming in viscoelastic fluids. Phys. Rev. Lett. 106, 208101 (2011)CrossRef Shen, X., Arratia, P.: Undulatory Swimming in viscoelastic fluids. Phys. Rev. Lett. 106, 208101 (2011)CrossRef
7.
Zurück zum Zitat Espinosa-Garcia, J., Lauga, E., Zenit, R.: Fluid elasticity increases the locomotion of flexible swimmers. Phys. Fluids 25, 031701 (2013)CrossRef Espinosa-Garcia, J., Lauga, E., Zenit, R.: Fluid elasticity increases the locomotion of flexible swimmers. Phys. Fluids 25, 031701 (2013)CrossRef
8.
Zurück zum Zitat Thomases, B., Guy, R.: Mechanisms of elastic enhancement and hindrance for finite length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113(9), 098102 (2014)CrossRef Thomases, B., Guy, R.: Mechanisms of elastic enhancement and hindrance for finite length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113(9), 098102 (2014)CrossRef
9.
Zurück zum Zitat Thomases, B., Guy, R.: The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids. J. Fluid Mech. 825, 109–132 (2017)MathSciNetCrossRef Thomases, B., Guy, R.: The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids. J. Fluid Mech. 825, 109–132 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Cogan, N., Guy, R.: Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J. 4(1), 11–25 (2010)CrossRef Cogan, N., Guy, R.: Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J. 4(1), 11–25 (2010)CrossRef
11.
Zurück zum Zitat Barnes, H.: A Review of the slip (Wall Depletion) of polymer solutions, emulsions and particle suspensions in viscometers. J. Non-Newton. Fluid Mech. 56(3), 221–251 (1995)CrossRef Barnes, H.: A Review of the slip (Wall Depletion) of polymer solutions, emulsions and particle suspensions in viscometers. J. Non-Newton. Fluid Mech. 56(3), 221–251 (1995)CrossRef
12.
Zurück zum Zitat Fu, H., Shenoy, V., Powers, T.: Low-Reynolds-number swimming in gels. Europhys. Lett. 91(2), 24002 (2010)CrossRef Fu, H., Shenoy, V., Powers, T.: Low-Reynolds-number swimming in gels. Europhys. Lett. 91(2), 24002 (2010)CrossRef
13.
Zurück zum Zitat Man, Y., Lauga, E.: Phase-separation models for swimming enhancement in complex fluids. Phys. Rev. E 92, 023004 (2015)MathSciNetCrossRef Man, Y., Lauga, E.: Phase-separation models for swimming enhancement in complex fluids. Phys. Rev. E 92, 023004 (2015)MathSciNetCrossRef
14.
Zurück zum Zitat Du, J., Guy, R., Fogelson, A.: An immersed boundary method for two-fluid mixtures. J. Comput. Phys. 262, 231–243 (2014)MathSciNetCrossRef Du, J., Guy, R., Fogelson, A.: An immersed boundary method for two-fluid mixtures. J. Comput. Phys. 262, 231–243 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat Lee, P., Wolgemuth, C.: An immersed boundary method for two-phase fluids and gels and the swimming of C. elegans through viscoelastic fluids. Phys. Fluids 28(1), 011901 (2016)CrossRef Lee, P., Wolgemuth, C.: An immersed boundary method for two-phase fluids and gels and the swimming of C. elegans through viscoelastic fluids. Phys. Fluids 28(1), 011901 (2016)CrossRef
17.
Zurück zum Zitat Sochi, T.: Slip at fluid-solid interface. Polym. Rev. 51(4), 309–340 (2011)CrossRef Sochi, T.: Slip at fluid-solid interface. Polym. Rev. 51(4), 309–340 (2011)CrossRef
18.
Zurück zum Zitat Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. A 209, 447–461 (1951)MathSciNetMATH Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. A 209, 447–461 (1951)MathSciNetMATH
19.
20.
Zurück zum Zitat Williams, H., Fauci, L., Gaver III, D.: Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Disc. Continuous Dyn. Syst. Ser. B 11(2), 519–540 (2009)MathSciNetMATH Williams, H., Fauci, L., Gaver III, D.: Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Disc. Continuous Dyn. Syst. Ser. B 11(2), 519–540 (2009)MathSciNetMATH
21.
Zurück zum Zitat Vanka, S.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Computat. Phys. 65(1), 138–158 (1986)MathSciNetCrossRef Vanka, S.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Computat. Phys. 65(1), 138–158 (1986)MathSciNetCrossRef
22.
Zurück zum Zitat Wright, G., Guy, R., Du, J., Fogelson, A.: A high-resolution finite-difference method for simulating two-fluid, viscoelastic gel dynamics. J. Non-Newton. Fluid Mech. 166, 1137–1157 (2011)CrossRef Wright, G., Guy, R., Du, J., Fogelson, A.: A high-resolution finite-difference method for simulating two-fluid, viscoelastic gel dynamics. J. Non-Newton. Fluid Mech. 166, 1137–1157 (2011)CrossRef
23.
Zurück zum Zitat Du, J., Fogelson, A.: A two-phase mixture model of platelet aggregation. Math. Med. Biol. 35(2), 225–256 (2018)MathSciNetCrossRef Du, J., Fogelson, A.: A two-phase mixture model of platelet aggregation. Math. Med. Biol. 35(2), 225–256 (2018)MathSciNetCrossRef
Metadaten
Titel
Low Reynolds Number Swimming with Slip Boundary Conditions
verfasst von
Hashim Alshehri
Nesreen Althobaiti
Jian Du
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-50426-7_12