Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2017

20.06.2017 | Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Low temperature, fast synthesis and ionic conductivity of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) garnets

verfasst von: Ling Li, Liuliu Feng, Yunqiang Zhang, Hongjian Peng, Yingping Zou

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we report low temperature, fast synthesis of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) with the cubic garnet structure by sol–gel process. The optimized synthesis condition is 775 °C for 6 h with 10% excess lithium salt. The calcination temperature is nearly 125 °C lower than that in the solid state reaction, and the calcination time(~6 h) is shorter than in the solid state reaction(~24 h). Qualitative phase analysis by X-ray powder diffraction patterns combined with the Rietveld method reveals garnet type compounds as major phases. The cubic lattice parameter is found to increase with increasing size of the alkaline earth ions under the same preparation conditions. The density was found to be increasing with increasing ionic radius of the alkaline earth elements. In comparison, the ionic conductivity decreases with decreasing ionic radius of the alkaline earth elements. Among the compounds, the Li6BaLa2Nb2O12 exhibits the highest ionic conductivity of 1.2 × 10−5 S cm−1 at room temperature.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4453-5/MediaObjects/10971_2017_4453_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries[J]. Chem Mater 22(3):587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries[J]. Chem Mater 22(3):587–603CrossRef
2.
Zurück zum Zitat Jacobson AJ (2010) Materials for solid oxide fuel cells[J]. Chem Mater 22(3):660–674CrossRef Jacobson AJ (2010) Materials for solid oxide fuel cells[J]. Chem Mater 22(3):660–674CrossRef
3.
Zurück zum Zitat Yutao Li Jian-Tao, Han, Chang-An Wang Hui, Xie, Goodenough JohnB (2012) Optimizing Li+ conductivity in a garnet framework[J]. J Mater Chem 22:15357–15361CrossRef Yutao Li Jian-Tao, Han, Chang-An Wang Hui, Xie, Goodenough JohnB (2012) Optimizing Li+ conductivity in a garnet framework[J]. J Mater Chem 22:15357–15361CrossRef
4.
Zurück zum Zitat Nakayama M, Kotobuki M, Munakata H, Nogami M, Kanamura K (2012) First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides[J]. Phys Chem Chem Phys 14(28):10008–10014CrossRef Nakayama M, Kotobuki M, Munakata H, Nogami M, Kanamura K (2012) First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides[J]. Phys Chem Chem Phys 14(28):10008–10014CrossRef
5.
Zurück zum Zitat Rosenkiewitz N, Schuhmacher J, Bockmeyer M, Deubener J (2015) Nireogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12(LLZO)[J]. J Power Sources 278(1-2):104–108CrossRef Rosenkiewitz N, Schuhmacher J, Bockmeyer M, Deubener J (2015) Nireogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12(LLZO)[J]. J Power Sources 278(1-2):104–108CrossRef
6.
Zurück zum Zitat Cussen JE, Thamas WS (2007) A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12[J]. J Solid State Chem 180:1832–1839CrossRef Cussen JE, Thamas WS (2007) A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12[J]. J Solid State Chem 180:1832–1839CrossRef
7.
Zurück zum Zitat Murngan R, Wepper W, Schmid-Beurmann P (2007) Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12[J]. Mater Sci Eng B 143:14–20CrossRef Murngan R, Wepper W, Schmid-Beurmann P (2007) Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12[J]. Mater Sci Eng B 143:14–20CrossRef
8.
Zurück zum Zitat Thangadurai V, Narayanan S, Pinaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chem Soc Rev 43(13):4714–4727CrossRef Thangadurai V, Narayanan S, Pinaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chem Soc Rev 43(13):4714–4727CrossRef
9.
Zurück zum Zitat Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. J Power Sources 202(1-2):332–335CrossRef Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. J Power Sources 202(1-2):332–335CrossRef
10.
Zurück zum Zitat Thangadurai V, Weppner W (2005) Li6ALa2M2O12 (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with Garnet-like structure [J]. J Am Ceram Soc. 88(2):411–418CrossRef Thangadurai V, Weppner W (2005) Li6ALa2M2O12 (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with Garnet-like structure [J]. J Am Ceram Soc. 88(2):411–418CrossRef
11.
Zurück zum Zitat Thangadurai V, Weppner W (2005) Li6ALa2Ta2O12 (A. = .Sr,.Ba): novel garnet‐like oxides for fast lithium ion conduction. Adv Funct Mater 15:107–112CrossRef Thangadurai V, Weppner W (2005) Li6ALa2Ta2O12 (A. = .Sr,.Ba): novel garnet‐like oxides for fast lithium ion conduction. Adv Funct Mater 15:107–112CrossRef
12.
Zurück zum Zitat Wang Y, Lai W (2012) High ionic conductivity lithium garnet oxides of Li7-xLa3Zr2-xTaxO12 compositions. Solid State Lett 15(5):A68–A71CrossRef Wang Y, Lai W (2012) High ionic conductivity lithium garnet oxides of Li7-xLa3Zr2-xTaxO12 compositions. Solid State Lett 15(5):A68–A71CrossRef
13.
Zurück zum Zitat Larraz G, Orera A, Sanjuàn ML (2013) Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration[J]. J Mater Chem 1(37):11419–11428CrossRef Larraz G, Orera A, Sanjuàn ML (2013) Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration[J]. J Mater Chem 1(37):11419–11428CrossRef
14.
Zurück zum Zitat Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, Sakamoto J (2014) Tetragonal vs. cubic phase stability in Al- free Ta Doped Li7La3Zr2O12(LLZO) [J]. J Mater Chem A 2(33):13431–13436CrossRef Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, Sakamoto J (2014) Tetragonal vs. cubic phase stability in Al- free Ta Doped Li7La3Zr2O12(LLZO) [J]. J Mater Chem A 2(33):13431–13436CrossRef
15.
Zurück zum Zitat Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen JL, Bernstein N, Stewart DA, Johannes MD (2015) Structure and stoichiometry in supervalent doped Li7La3Zr2O12 [J]. Chem Mater 27(10):3658–3665CrossRef Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen JL, Bernstein N, Stewart DA, Johannes MD (2015) Structure and stoichiometry in supervalent doped Li7La3Zr2O12 [J]. Chem Mater 27(10):3658–3665CrossRef
16.
Zurück zum Zitat Percival J, Kendrick E, Smith RI, Slater PR (2009) Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. Dalton Trans 26:5177–5181 Percival J, Kendrick E, Smith RI, Slater PR (2009) Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. Dalton Trans 26:5177–5181
17.
Zurück zum Zitat Awaka J, Kijima N, Kataoka K, Hayakawa H, Ohshima K-i, Akimoto J (2010) Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure[J]. J Solid State Chem 183:180–185CrossRef Awaka J, Kijima N, Kataoka K, Hayakawa H, Ohshima K-i, Akimoto J (2010) Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure[J]. J Solid State Chem 183:180–185CrossRef
18.
Zurück zum Zitat Murugan R, Thangadurai V, Weppner W (2008) Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5 + x BaLa2Ta2O11.5 + 0.5x (x = 0–2). Appl Phys A 91:615–621CrossRef Murugan R, Thangadurai V, Weppner W (2008) Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5 + x BaLa2Ta2O11.5 + 0.5x (x = 0–2). Appl Phys A 91:615–621CrossRef
19.
Zurück zum Zitat Narayanan S, Ramezanipour F, Thangadurai V (2012) Enhancing Li ion conductivity of garnet-type Li5La3Nb2O12 by Y- and Li-codoping: Synthesis, structure, chemical stability, and transport properties[J]. J Phys Chem C 116(38):20154–20162CrossRef Narayanan S, Ramezanipour F, Thangadurai V (2012) Enhancing Li ion conductivity of garnet-type Li5La3Nb2O12 by Y- and Li-codoping: Synthesis, structure, chemical stability, and transport properties[J]. J Phys Chem C 116(38):20154–20162CrossRef
20.
Zurück zum Zitat Baral AK, Narayanan S, Ramezanipour F, Thangadurai V (2014) Evaluation of fundamental transport properties of Li-excess garnet type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy[J]. Phys Chem Chem Phys 16:11356–11365CrossRef Baral AK, Narayanan S, Ramezanipour F, Thangadurai V (2014) Evaluation of fundamental transport properties of Li-excess garnet type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy[J]. Phys Chem Chem Phys 16:11356–11365CrossRef
21.
Zurück zum Zitat Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr 2-x,Nbx)O12 (x = 0–2)[J]. J Power Sources 196(6):3342–3345CrossRef Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr 2-x,Nbx)O12 (x = 0–2)[J]. J Power Sources 196(6):3342–3345CrossRef
22.
Zurück zum Zitat Peng H, Wu Q, Xiao L (2013) Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol-gel process[J]. J Sol–Gel Sci Technol 66(1):175–179CrossRef Peng H, Wu Q, Xiao L (2013) Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol-gel process[J]. J Sol–Gel Sci Technol 66(1):175–179CrossRef
23.
Zurück zum Zitat Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications [J]. Prog Mater Sci 88:325–411CrossRef Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications [J]. Prog Mater Sci 88:325–411CrossRef
24.
Zurück zum Zitat Ullmann H, Trofimenko N, Tietz F, Stover D, Khanlou AA (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type for SOFC cathodes [J]. Solid State Ionics 138:79–90CrossRef Ullmann H, Trofimenko N, Tietz F, Stover D, Khanlou AA (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type for SOFC cathodes [J]. Solid State Ionics 138:79–90CrossRef
Metadaten
Titel
Low temperature, fast synthesis and ionic conductivity of Li6MLa2Nb2O12 (M = Ca, Sr, Ba) garnets
verfasst von
Ling Li
Liuliu Feng
Yunqiang Zhang
Hongjian Peng
Yingping Zou
Publikationsdatum
20.06.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4453-5

Weitere Artikel der Ausgabe 3/2017

Journal of Sol-Gel Science and Technology 3/2017 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Thermal properties of silica-coated cellulose fibers for increased fire-resistance

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Influence of sol–gel derived strontium–cerium co-substitution in fluorohydroxyapatite and its in-vitro bioactivity

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Titania–silica hybrid films derived by a sol–gel process for organic field effect transistors

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Annealing temperature-dependent microstructure and optical and electrical properties of solution-derived Gd-doped ZrO2 high-k gate dielectrics

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

A cork–silica xerogel nanocomposite with unique properties

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.