Skip to main content
Erschienen in: Journal of Materials Science 6/2018

21.11.2017 | Electronic materials

Low-voltage-driven Pt/BiFeO3/DyScO3/p-Si-based metal–ferroelectric–insulator–semiconductor device for non-volatile memory

verfasst von: Rohit Medwal, Surbhi Gupta, Shojan P. Pavunny, Rajesh K. Katiyar, Reji Thomas, Ram S. Katiyar

Erschienen in: Journal of Materials Science | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, ferroelectric random access memory has drawn considerable attention as promising replacement to both dynamic random access memory and flash memory. Specifically in metal–ferroelectric–insulator–semiconductor (MFIS)-based structures, bi-stable polarization of ferroelectric gate even in absence of power holds the resistance state of semiconductor-drain channel between two logic states and offers additional features of non-destructive readout and non-volatile storage capability. However, insulating layer in such structure leads to high depolarizing field across FE layer and in turn high-voltage operation. In the present work, comprehensive performance of low-voltage-driven MFIS device, i.e., Pt (40 nm)/BiFeO3 (265 nm)/DyScO3 (6 nm)/Si is evaluated for gate voltage stress (± 2 to ± 9 V) at different thermal agitation (200–400 K). Fat capacitance–voltage (CV) hysteresis centered at zero bias with large memory window (ΔV FB) of 1.9 V at low operating voltage of ± 5 V, and stable data retention with distinguishable ON/OFF state values specifies strong charge storage potential of MFIS device in extreme conditions of ± 100 K. X-ray diffraction revealed polycrystalline and rhombohedral R3c phase of BiFeO3 film and out-of-plane piezoresponse force microscopy analysis showed the ultrafast domain switching with sharp contrast. Complete 180° phase reversal in hysteresis loop and bufferfly-shaped piezo-actuation amplitude loop further confirmed the enhanced ferroelectric properties of BiFeO3 thin films. Nonlinear JV curves of MFIS structure were investigated to understand the device reliability and charge transport mechanism. These encouraging results are crucial for designing more reliable integrated MFIS-based non-destructive readout non-volatile memory devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wong HSP, Salahuddin S (2015) Memory leads the way to better computing. Nat Nanotech 10:191–194CrossRef Wong HSP, Salahuddin S (2015) Memory leads the way to better computing. Nat Nanotech 10:191–194CrossRef
2.
Zurück zum Zitat Wen Z, Li C, Wu D, Li A, Ming N (2013) Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 12:617–621CrossRef Wen Z, Li C, Wu D, Li A, Ming N (2013) Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 12:617–621CrossRef
3.
Zurück zum Zitat Garcia V, Bibes M (2012) Electronics: inside story of ferroelectric memories. Nature 483:279–281CrossRef Garcia V, Bibes M (2012) Electronics: inside story of ferroelectric memories. Nature 483:279–281CrossRef
4.
5.
Zurück zum Zitat Scott JF, Araujo CAP (1989) Ferroelectric memories. Science 246:1400–1405CrossRef Scott JF, Araujo CAP (1989) Ferroelectric memories. Science 246:1400–1405CrossRef
6.
Zurück zum Zitat Sakai S, Takahashi M (2010) Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 3:4950–4964CrossRef Sakai S, Takahashi M (2010) Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 3:4950–4964CrossRef
7.
Zurück zum Zitat Verma RM, Rao A, Singh BR (2014) Electrical characterization of the metal ferroelectric oxide semiconductor and metal ferroelectric nitride semiconductor gate stacks for ferroelectric field effect transistors. Appl Phys Lett 104:092907CrossRef Verma RM, Rao A, Singh BR (2014) Electrical characterization of the metal ferroelectric oxide semiconductor and metal ferroelectric nitride semiconductor gate stacks for ferroelectric field effect transistors. Appl Phys Lett 104:092907CrossRef
8.
Zurück zum Zitat Kundu S, Maurya D, Clavel M, Zhou Y, Halder NN, Hudait MK, Banerji P, Priya S (2015) Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications. Sci Rep 5:8494CrossRef Kundu S, Maurya D, Clavel M, Zhou Y, Halder NN, Hudait MK, Banerji P, Priya S (2015) Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications. Sci Rep 5:8494CrossRef
9.
Zurück zum Zitat Chen KH, Cheng CM, Lin CC, Tsai JH (2013) Fabrication and electrical characteristics of metal-ferroelectric Ba(Zr0.1Ti0.9)O3 film-insulator-silicon structure. Integr Ferroelectr 143:40–46CrossRef Chen KH, Cheng CM, Lin CC, Tsai JH (2013) Fabrication and electrical characteristics of metal-ferroelectric Ba(Zr0.1Ti0.9)O3 film-insulator-silicon structure. Integr Ferroelectr 143:40–46CrossRef
10.
Zurück zum Zitat Gupta S, Tomar M, Gupta V (2016) Ferroelectric photovoltaic response to structural transformations in doped BiFeO3 derivative thin films. Mater Des 105:296–300CrossRef Gupta S, Tomar M, Gupta V (2016) Ferroelectric photovoltaic response to structural transformations in doped BiFeO3 derivative thin films. Mater Des 105:296–300CrossRef
11.
Zurück zum Zitat Wang L, Jin KJ, Gu JX et al (2014) A new non-destructive readout by using photo-recovered surface potential contrast. Sci Rep 4:6980CrossRef Wang L, Jin KJ, Gu JX et al (2014) A new non-destructive readout by using photo-recovered surface potential contrast. Sci Rep 4:6980CrossRef
12.
Zurück zum Zitat Guo R, You L, Zhou Y, Lim ZS, Zou X, Chen L, Ramesh R, Wang J (2013) Non-volatile memory based on the ferroelectric photovoltaic effect. Nat Commun 4:1990 Guo R, You L, Zhou Y, Lim ZS, Zou X, Chen L, Ramesh R, Wang J (2013) Non-volatile memory based on the ferroelectric photovoltaic effect. Nat Commun 4:1990
13.
Zurück zum Zitat Murari NM, Thomas R, Pavunny SP, Calzada JR, Katiyar RS (2009) DyScO3 buffer layer for a performing metal-ferroelectric-insulator-semiconductor structure with multiferroic BiFeO3 thin film. Appl Phys Lett 94:142907CrossRef Murari NM, Thomas R, Pavunny SP, Calzada JR, Katiyar RS (2009) DyScO3 buffer layer for a performing metal-ferroelectric-insulator-semiconductor structure with multiferroic BiFeO3 thin film. Appl Phys Lett 94:142907CrossRef
14.
Zurück zum Zitat Thomas R, Melgarejo RE, Pradhan DK, Karan NK, Saavedra-Arias JJ, Katiyar RS (2008) Metal-ferroelectric-insulator-semiconductor (MFIS) devices based on DyScO3 buffer layer and ferroelectric Bi3.25Nd0.75Ti3O12 thin film. ECS Trans 13:363–371CrossRef Thomas R, Melgarejo RE, Pradhan DK, Karan NK, Saavedra-Arias JJ, Katiyar RS (2008) Metal-ferroelectric-insulator-semiconductor (MFIS) devices based on DyScO3 buffer layer and ferroelectric Bi3.25Nd0.75Ti3O12 thin film. ECS Trans 13:363–371CrossRef
15.
Zurück zum Zitat Gupta S, Tomar M, Gupta V, James AR, Pal M, Guo R, Bhalla A (2014) Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film. J Appl Phys 115:234105CrossRef Gupta S, Tomar M, Gupta V, James AR, Pal M, Guo R, Bhalla A (2014) Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film. J Appl Phys 115:234105CrossRef
16.
Zurück zum Zitat Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485CrossRef Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485CrossRef
17.
Zurück zum Zitat Gupta S, Medwal R, Limbu TB, Katiyar RK, Pavunny SP, Tomar M, Morell G, Gupta V, Katiyar RS (2015) Graphene/semiconductor silicon modified BiFeO3/ITO ferroelectric photovoltaic device for transparent self-powered windows. Appl Phys Lett 107(6):062902–062902.5CrossRef Gupta S, Medwal R, Limbu TB, Katiyar RK, Pavunny SP, Tomar M, Morell G, Gupta V, Katiyar RS (2015) Graphene/semiconductor silicon modified BiFeO3/ITO ferroelectric photovoltaic device for transparent self-powered windows. Appl Phys Lett 107(6):062902–062902.5CrossRef
18.
Zurück zum Zitat Chen KY, Chu KL, Chen PH, Wu YH (2016) Ferroelectricity of low thermal-budget HfAlO x for devices with metal-ferroelectric-insulator-semiconductor structure. RSC Adv 6:74445–74452CrossRef Chen KY, Chu KL, Chen PH, Wu YH (2016) Ferroelectricity of low thermal-budget HfAlO x for devices with metal-ferroelectric-insulator-semiconductor structure. RSC Adv 6:74445–74452CrossRef
19.
Zurück zum Zitat Lim M, Kalkur TS (1998) The role of leakage current on the memory window and memory retention in MFIS structure. Integr Ferroelectr 22:205–211CrossRef Lim M, Kalkur TS (1998) The role of leakage current on the memory window and memory retention in MFIS structure. Integr Ferroelectr 22:205–211CrossRef
20.
Zurück zum Zitat Gerber A, Kohlstedt H, Fitsilis M, Waser R, Reece TJ, Ducharme S, Rije E (2006) Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir–Blodgett film. J Appl Phys 100:024110CrossRef Gerber A, Kohlstedt H, Fitsilis M, Waser R, Reece TJ, Ducharme S, Rije E (2006) Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir–Blodgett film. J Appl Phys 100:024110CrossRef
21.
Zurück zum Zitat Kawae T, Seto Y, Morimoto A (2013) Fabrication and characterization of metal-ferroelectric-insulator-semiconductor capacitor structure with ferroelectric (Bi, Pr)(Fe, Mn)O3 thin films. Jpn J Appl Phys 52:04CH03CrossRef Kawae T, Seto Y, Morimoto A (2013) Fabrication and characterization of metal-ferroelectric-insulator-semiconductor capacitor structure with ferroelectric (Bi, Pr)(Fe, Mn)O3 thin films. Jpn J Appl Phys 52:04CH03CrossRef
22.
Zurück zum Zitat Koo SM, Khartsev SI, Zetterling CM, Grishin AM, Ostling M (2003) Processing and properties of ferroelectric Pb(Zr, Ti)O3/silicon carbide field-effect transistor. Integr Ferroelectr 57:1221–1231 Koo SM, Khartsev SI, Zetterling CM, Grishin AM, Ostling M (2003) Processing and properties of ferroelectric Pb(Zr, Ti)O3/silicon carbide field-effect transistor. Integr Ferroelectr 57:1221–1231
23.
Zurück zum Zitat Fujisawa H, Sugata M, Shimizu M, Niu H (2003) Characterization of MOCVD-TiO2 and ZrO2 insulating layers in MFIS structures by DLTS and ICTS methods. J Kor Phys Soc 42:S1354–S1356 Fujisawa H, Sugata M, Shimizu M, Niu H (2003) Characterization of MOCVD-TiO2 and ZrO2 insulating layers in MFIS structures by DLTS and ICTS methods. J Kor Phys Soc 42:S1354–S1356
24.
Zurück zum Zitat Sugiyama H, Nakaiso T, Adachi Y, Noda M, Okuyama M (2000) An improvement in C–V characteristics of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory using a silicon nitride buffer layer. Jpn J Appl Phys 39:2131–2135CrossRef Sugiyama H, Nakaiso T, Adachi Y, Noda M, Okuyama M (2000) An improvement in C–V characteristics of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory using a silicon nitride buffer layer. Jpn J Appl Phys 39:2131–2135CrossRef
25.
Zurück zum Zitat Juan PC, Wang JL, Hsieh TY, Lin CL, Yang CM, Shye DC (2015) The physical and electrical characterizations of Cr-doped BiFeO3 ferroelectric thin films for nonvolatile memory applications. Microelectron Eng 138:86–90CrossRef Juan PC, Wang JL, Hsieh TY, Lin CL, Yang CM, Shye DC (2015) The physical and electrical characterizations of Cr-doped BiFeO3 ferroelectric thin films for nonvolatile memory applications. Microelectron Eng 138:86–90CrossRef
26.
Zurück zum Zitat Lin CM, Shih WC, Chang IYK, Juan PC, Lee JYM (2009) Metal-ferroelectric (BiFeO3)-insulator (Y2O3)-semiconductor capacitors and field effect transistors for nonvolatile memory applications. Appl Phys Lett 94:142905CrossRef Lin CM, Shih WC, Chang IYK, Juan PC, Lee JYM (2009) Metal-ferroelectric (BiFeO3)-insulator (Y2O3)-semiconductor capacitors and field effect transistors for nonvolatile memory applications. Appl Phys Lett 94:142905CrossRef
27.
Zurück zum Zitat Chiang YW, Wu JM (2007) Characterization of metal-ferroelectric (BiFeO3)-insulator (ZrO2)-silicon capacitors for nonvolatile memory applications. Appl Phys Lett 91:142103CrossRef Chiang YW, Wu JM (2007) Characterization of metal-ferroelectric (BiFeO3)-insulator (ZrO2)-silicon capacitors for nonvolatile memory applications. Appl Phys Lett 91:142103CrossRef
28.
Zurück zum Zitat Noda M, Kodama K, Kitai S, Takahashi M, Kanashima T, Okuyama M (2003) Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrO x insulator layer. J Appl Phys 93:4137CrossRef Noda M, Kodama K, Kitai S, Takahashi M, Kanashima T, Okuyama M (2003) Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrO x insulator layer. J Appl Phys 93:4137CrossRef
Metadaten
Titel
Low-voltage-driven Pt/BiFeO3/DyScO3/p-Si-based metal–ferroelectric–insulator–semiconductor device for non-volatile memory
verfasst von
Rohit Medwal
Surbhi Gupta
Shojan P. Pavunny
Rajesh K. Katiyar
Reji Thomas
Ram S. Katiyar
Publikationsdatum
21.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1828-5

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Science 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.