Skip to main content
Erschienen in: Neural Computing and Applications 23/2020

04.05.2020 | Original Article

LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings

verfasst von: Fatma Mtibaa, Kim-Khoa Nguyen, Muhammad Azam, Anastasios Papachristou, Jean-Simon Venne, Mohamed Cheriet

Erschienen in: Neural Computing and Applications | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate indoor air temperature (IAT) predictions for heating, ventilation, and air conditioning (HVAC) systems are challenging, especially for multi-zone building and for different HVAC system types. Moreover, the nonlinearity of the buildings thermal dynamics makes the IAT prediction more difficult since it is affected by complex factors such as controlled and uncontrolled points, outside weather conditions and occupancy schedule. This paper presents a long short-term memory (LSTM) model to predict IAT for multi-zone building based on direct multi-step prediction with sequence-to-sequence approach. Two strategies, LSTM-MISO and LSTM-MIMO, are built for multi-input single-output and multi-input multi-output, respectively. The performance of these two strategies has been evaluated based on two case studies on real smart buildings using variable air volume (VAV) and constant air volume (CAV) systems. For both buildings, experimental results showed that the LSTM models outperform multilayer perceptron models by reducing the prediction error by 50%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Costa A, Keane MM, Torrens JI, Corry E (2013) Building operation and energy performance: monitoring, analysis and optimisation toolkit. Appl Energy 101:310–316CrossRef Costa A, Keane MM, Torrens JI, Corry E (2013) Building operation and energy performance: monitoring, analysis and optimisation toolkit. Appl Energy 101:310–316CrossRef
2.
Zurück zum Zitat Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications-a review. Appl Energy 115:164–173CrossRef Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications-a review. Appl Energy 115:164–173CrossRef
3.
Zurück zum Zitat Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398CrossRef Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398CrossRef
4.
Zurück zum Zitat Baniasadi A, Habibi D, Bass O, Masoum MAS (2018) Optimal real-time residential thermal energy management for peak-load shifting with experimental verification. IEEE Trans Smart Grid 1:1CrossRef Baniasadi A, Habibi D, Bass O, Masoum MAS (2018) Optimal real-time residential thermal energy management for peak-load shifting with experimental verification. IEEE Trans Smart Grid 1:1CrossRef
5.
Zurück zum Zitat Standard A (2017) Standard 55–2017 thermal environmental conditions for human occupancy. Ashrae, Atlanta Standard A (2017) Standard 55–2017 thermal environmental conditions for human occupancy. Ashrae, Atlanta
6.
Zurück zum Zitat Rojas JD, Kunusch C, Ocampo-Martinez C, Puig V (2015) Control-oriented thermal modeling methodology for water-cooled pem fuel-cell-based systems. IEEE Trans Ind Electron 62(8):5146–5154CrossRef Rojas JD, Kunusch C, Ocampo-Martinez C, Puig V (2015) Control-oriented thermal modeling methodology for water-cooled pem fuel-cell-based systems. IEEE Trans Ind Electron 62(8):5146–5154CrossRef
7.
Zurück zum Zitat Afroz Z, Urmee T, Shafiullah G, Higgins G (2018) Real-time prediction model for indoor temperature in a commercial building. Appl Energy 231:29–53CrossRef Afroz Z, Urmee T, Shafiullah G, Higgins G (2018) Real-time prediction model for indoor temperature in a commercial building. Appl Energy 231:29–53CrossRef
8.
Zurück zum Zitat Sturzenegger D, Gyalistras D, Morari M, Smith RS (2016) Model predictive climate control of a swiss office building: implementation, results, and cost-benefit analysis. IEEE Trans Control Syst Technol 24(1):1–12CrossRef Sturzenegger D, Gyalistras D, Morari M, Smith RS (2016) Model predictive climate control of a swiss office building: implementation, results, and cost-benefit analysis. IEEE Trans Control Syst Technol 24(1):1–12CrossRef
9.
Zurück zum Zitat Chen X, Wang Q, Srebric J (2015) A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings. Energy Build 91:187–198CrossRef Chen X, Wang Q, Srebric J (2015) A data-driven state-space model of indoor thermal sensation using occupant feedback for low-energy buildings. Energy Build 91:187–198CrossRef
10.
Zurück zum Zitat Huang H, Chen L, Hu E (2015) A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings. Energy Build 97:86–97CrossRef Huang H, Chen L, Hu E (2015) A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings. Energy Build 97:86–97CrossRef
11.
Zurück zum Zitat Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A (2018) Model predictive control (mpc) for enhancing building and hvac system energy efficiency: problem formulation, applications and opportunities. Energies 11(3):631CrossRef Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A (2018) Model predictive control (mpc) for enhancing building and hvac system energy efficiency: problem formulation, applications and opportunities. Energies 11(3):631CrossRef
12.
Zurück zum Zitat Huang H, Chen L, Hu E (2015) A new model predictive control scheme for energy and cost savings in commercial buildings: an airport terminal building case study. Build Environ 89:203–216CrossRef Huang H, Chen L, Hu E (2015) A new model predictive control scheme for energy and cost savings in commercial buildings: an airport terminal building case study. Build Environ 89:203–216CrossRef
13.
Zurück zum Zitat Attoue N, Shahrour I, Younes R (2018) Smart building: use of the artificial neural network approach for indoor temperature forecasting. Energies 11(2):395CrossRef Attoue N, Shahrour I, Younes R (2018) Smart building: use of the artificial neural network approach for indoor temperature forecasting. Energies 11(2):395CrossRef
15.
Zurück zum Zitat He X, Zhang Z, Kusiak A (2014) Performance optimization of hvac systems with computational intelligence algorithms. Energy Build 81:371–380CrossRef He X, Zhang Z, Kusiak A (2014) Performance optimization of hvac systems with computational intelligence algorithms. Energy Build 81:371–380CrossRef
16.
Zurück zum Zitat Zeng Y, Zhang Z, Kusiak A (2015) Predictive modeling and optimization of a multi-zone hvac system with data mining and firefly algorithms. Energy 86:393–402CrossRef Zeng Y, Zhang Z, Kusiak A (2015) Predictive modeling and optimization of a multi-zone hvac system with data mining and firefly algorithms. Energy 86:393–402CrossRef
17.
Zurück zum Zitat Xu C, Chen H, Wang J, Guo Y, Yuan Y (2019) Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method. Build Environ 148:128–135CrossRef Xu C, Chen H, Wang J, Guo Y, Yuan Y (2019) Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method. Build Environ 148:128–135CrossRef
18.
Zurück zum Zitat Riekstin AC, Langevin A, Dandres T, Gagnon G, Cheriet M (2018) Time series-based ghg emissions prediction for smart homes. IEEE Trans Sustain Comput 1:1 Riekstin AC, Langevin A, Dandres T, Gagnon G, Cheriet M (2018) Time series-based ghg emissions prediction for smart homes. IEEE Trans Sustain Comput 1:1
19.
Zurück zum Zitat Liang Y, Ouyang K, Jing L, Ruan S, Liu Y, Zhang J, Rosenblum DS, Zheng Y (2019) Urbanfm: inferring fine-grained urban flows, In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2019, pp 3132–3142 Liang Y, Ouyang K, Jing L, Ruan S, Liu Y, Zhang J, Rosenblum DS, Zheng Y (2019) Urbanfm: inferring fine-grained urban flows, In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2019, pp 3132–3142
20.
Zurück zum Zitat Du Z, Fan B, Jin X, Chi J (2014) Fault detection and diagnosis for buildings and hvac systems using combined neural networks and subtractive clustering analysis. Build Environ 73:1–11CrossRef Du Z, Fan B, Jin X, Chi J (2014) Fault detection and diagnosis for buildings and hvac systems using combined neural networks and subtractive clustering analysis. Build Environ 73:1–11CrossRef
21.
Zurück zum Zitat Castilla M, Álvarez J, Ortega M, Arahal M (2013) Neural network and polynomial approximated thermal comfort models for hvac systems. Build Environ 59:107–115CrossRef Castilla M, Álvarez J, Ortega M, Arahal M (2013) Neural network and polynomial approximated thermal comfort models for hvac systems. Build Environ 59:107–115CrossRef
22.
Zurück zum Zitat Abdel-Nasser M, Mahmoud K (2019) Accurate photovoltaic power forecasting models using deep lstm-rnn. Neural Comput Appl 31(7):2727–2740CrossRef Abdel-Nasser M, Mahmoud K (2019) Accurate photovoltaic power forecasting models using deep lstm-rnn. Neural Comput Appl 31(7):2727–2740CrossRef
23.
Zurück zum Zitat Jain A, Smarra F, Behl M, Mangharam R (2018) Data-driven model predictive control with regression trees-an application to building energy management. ACM Trans Cyber-Phys Syst 2(1):4CrossRef Jain A, Smarra F, Behl M, Mangharam R (2018) Data-driven model predictive control with regression trees-an application to building energy management. ACM Trans Cyber-Phys Syst 2(1):4CrossRef
24.
Zurück zum Zitat Smarra F, Jain A, de Rubeis T, Ambrosini D, D’Innocenzo A, Mangharam R (2018) Data-driven model predictive control using random forests for building energy optimization and climate control. Appl Energy 226:1252–1272CrossRef Smarra F, Jain A, de Rubeis T, Ambrosini D, D’Innocenzo A, Mangharam R (2018) Data-driven model predictive control using random forests for building energy optimization and climate control. Appl Energy 226:1252–1272CrossRef
25.
Zurück zum Zitat Javed A, Larijani H, Ahmadinia A, Emmanuel R (2014) Comparison of the robustness of rnn, mpc and ann controller for residential heating system. In: 2014 IEEE fourth international conference on big data and cloud computing. IEEE, 2014, pp 604–611 Javed A, Larijani H, Ahmadinia A, Emmanuel R (2014) Comparison of the robustness of rnn, mpc and ann controller for residential heating system. In: 2014 IEEE fourth international conference on big data and cloud computing. IEEE, 2014, pp 604–611
26.
Zurück zum Zitat Rahman A, Srikumar V, Smith AD (2018) Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl Energy 212:372–385CrossRef Rahman A, Srikumar V, Smith AD (2018) Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl Energy 212:372–385CrossRef
27.
Zurück zum Zitat Yan Y, Luh PB, Pattipati KR (2017) Fault diagnosis of hvac air-handling systems considering fault propagation impacts among components. IEEE Trans Autom Sci Eng 14(2):705–717CrossRef Yan Y, Luh PB, Pattipati KR (2017) Fault diagnosis of hvac air-handling systems considering fault propagation impacts among components. IEEE Trans Autom Sci Eng 14(2):705–717CrossRef
28.
Zurück zum Zitat Yao Y, Lian Z, Liu W, Hou Z, Wu M (2007) Evaluation program for the energy-saving of variable-air-volume systems. Energy Build 39(5):558–568CrossRef Yao Y, Lian Z, Liu W, Hou Z, Wu M (2007) Evaluation program for the energy-saving of variable-air-volume systems. Energy Build 39(5):558–568CrossRef
29.
Zurück zum Zitat Gers FA, Schraudolph NN, Schmidhuber J (2002) Learning precise timing with lstm recurrent networks. J Mach Learn Res 3:115–143MathSciNetMATH Gers FA, Schraudolph NN, Schmidhuber J (2002) Learning precise timing with lstm recurrent networks. J Mach Learn Res 3:115–143MathSciNetMATH
30.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
31.
Zurück zum Zitat Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292CrossRef Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292CrossRef
32.
33.
Zurück zum Zitat Ashrae A (2002) Ashrae guideline 14: measurement of energy and demand savings. Am Soc Heat Refrig Air-Cond Eng 35:41–63 Ashrae A (2002) Ashrae guideline 14: measurement of energy and demand savings. Am Soc Heat Refrig Air-Cond Eng 35:41–63
Metadaten
Titel
LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings
verfasst von
Fatma Mtibaa
Kim-Khoa Nguyen
Muhammad Azam
Anastasios Papachristou
Jean-Simon Venne
Mohamed Cheriet
Publikationsdatum
04.05.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04926-3

Weitere Artikel der Ausgabe 23/2020

Neural Computing and Applications 23/2020 Zur Ausgabe

S.I. : Emerging applications of Deep Learning and Spiking ANN

Estimating cooling production and monitoring efficiency in chillers using a soft sensor

S.I. : Emerging applications of Deep Learning and Spiking ANN

A CNN–LSTM model for gold price time-series forecasting

S.I. : Emerging applications of Deep Learning and Spiking ANN

Building an efficient OCR system for historical documents with little training data