Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 10/2023

23.04.2023 | Original Article

LSTM with spatiotemporal attention for IoT-based wireless sensor collected hydrological time-series forecasting

verfasst von: Jianying Huang, Jinhui Li, Jeill Oh, Hoon Kang

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is necessary to accurately assess the inflow and infiltration conditions in sewer systems if sewer overflows are to be avoided. In this regard, Long Short-Term Memory (LSTM) is widely utilized for hydrological time-series forecasting. However, hydrological time-series have been found to be highly nonlinear and dynamic, such that the original LSTM model cannot simultaneously consider the spatiotemporal correlations of the input sequences for water flow rate forecasting. To address this problem, we propose using an LSTM with spatiotemporal attention (LSTM-STA) model, one based on encoder-decoder architecture, as this will allow accurate forecasting of the water flow rate. The encoder incorporates a spatial attention mechanism module allowing it to adaptively capture the key spatial attributes from all related spatial attributes at each time step. The decoder also incorporates a temporal attention mechanism module for dynamically discovering the key encoder hidden states from all time steps in the window. Using the spatiotemporal attention mechanism, the LSTM-STA model comprehensively considers all the important factors influencing the water flow rate forecasting, in both temporal and spatial dimensions. We performed extensive experiments; applying the LSTM-STA model to real-world hydrological time-series datasets, each one containing 52,704 sampled data points while leveraging state-of-the-art SVR-rbf, MLP, CNN1D, GRU, LSTM, Encoder-Decoder, LSTM-SA, and LSTM-TA as baselines. The experimental results demonstrated that the LSTM-STA model outperforms the state-of-the-art baseline models. Specifically, the LSTM-STA model yields the lowest RMSE, MAE, MAPE, and the highest R2 in the test process, said values being 73.19, 33.37, 1.09, and 0.99858, respectively. We also verified the stability and hyperparameter sensitivity of the LSTM-STA model. Furthermore, we visualized the spatial attention weights and benefitted from spatial interpretability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Tan P, Zhou Y, Zhang Y, Zhu DZ, Zhang T (2019) Assessment and pathway determination for rainfall-derived inflow and infiltration in sanitary systems: a case study. Urban Water J 16(8):600–607CrossRef Tan P, Zhou Y, Zhang Y, Zhu DZ, Zhang T (2019) Assessment and pathway determination for rainfall-derived inflow and infiltration in sanitary systems: a case study. Urban Water J 16(8):600–607CrossRef
2.
Zurück zum Zitat Lepot M, Makris KF, Clemens FH (2017) Detection and quantification of lateral, illicit connections and infiltration in sewers with infra-red camera: conclusions after a wide experimental plan. Water Res 122:678–691CrossRef Lepot M, Makris KF, Clemens FH (2017) Detection and quantification of lateral, illicit connections and infiltration in sewers with infra-red camera: conclusions after a wide experimental plan. Water Res 122:678–691CrossRef
3.
Zurück zum Zitat Kang H, Yang S, Huang J, Oh J (2020) Time series prediction of wastewater flow rate by bidirectional LSTM deep learning. Int J Control Autom Syst 18(12):3023–3030CrossRef Kang H, Yang S, Huang J, Oh J (2020) Time series prediction of wastewater flow rate by bidirectional LSTM deep learning. Int J Control Autom Syst 18(12):3023–3030CrossRef
4.
Zurück zum Zitat Zhang M, Liu Y, Cheng X, Zhu DZ, Shi H, Yuan Z (2018) Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring. J Hydrol 558:174–183CrossRef Zhang M, Liu Y, Cheng X, Zhu DZ, Shi H, Yuan Z (2018) Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring. J Hydrol 558:174–183CrossRef
5.
Zurück zum Zitat Rosin TR, Romano M, Keedwell E, Kapelan Z (2021) A committee evolutionary neural network for the prediction of combined sewer overflows. Water Resour Manage 35(4):1273–1289CrossRef Rosin TR, Romano M, Keedwell E, Kapelan Z (2021) A committee evolutionary neural network for the prediction of combined sewer overflows. Water Resour Manage 35(4):1273–1289CrossRef
6.
Zurück zum Zitat Box GE, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65(332):1509–1526MathSciNetCrossRefMATH Box GE, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65(332):1509–1526MathSciNetCrossRefMATH
7.
Zurück zum Zitat Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & SonsMATH Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & SonsMATH
8.
Zurück zum Zitat Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRef Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRef
9.
Zurück zum Zitat Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl 22(3):592–598MathSciNetCrossRef Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl 22(3):592–598MathSciNetCrossRef
10.
Zurück zum Zitat Martínez-Acosta L, Medrano-Barboza JP, López-Ramos Á, Remolina López JF, López-Lambraño ÁA (2020) SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere 11(6):602CrossRef Martínez-Acosta L, Medrano-Barboza JP, López-Ramos Á, Remolina López JF, López-Lambraño ÁA (2020) SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere 11(6):602CrossRef
11.
Zurück zum Zitat Lin GF, Chen GR, Huang PY, Chou YC (2009) Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. J Hydrol 372(1–4):17–29CrossRef Lin GF, Chen GR, Huang PY, Chou YC (2009) Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. J Hydrol 372(1–4):17–29CrossRef
12.
Zurück zum Zitat Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38(10):13073–13081CrossRef Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38(10):13073–13081CrossRef
13.
Zurück zum Zitat Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80–108CrossRef Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80–108CrossRef
14.
Zurück zum Zitat Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef
15.
Zurück zum Zitat Gholami V, Sahour H (2022) Simulation of rainfall-runoff process using an artificial neural network (ANN) and field plots data. Theoret Appl Climatol 147(1):87–98CrossRef Gholami V, Sahour H (2022) Simulation of rainfall-runoff process using an artificial neural network (ANN) and field plots data. Theoret Appl Climatol 147(1):87–98CrossRef
16.
Zurück zum Zitat Kawakami K (2008) Supervised sequence labelling with recurrent neural networks. Ph. D. thesis. Kawakami K (2008) Supervised sequence labelling with recurrent neural networks. Ph. D. thesis.
17.
Zurück zum Zitat Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Networks 5(2):157–166CrossRef Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Networks 5(2):157–166CrossRef
18.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
19.
Zurück zum Zitat Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-runoff modelling using long short-term memory (LSTM) networks. Hydrol Earth Syst Sci 22(11):6005–6022CrossRef Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall-runoff modelling using long short-term memory (LSTM) networks. Hydrol Earth Syst Sci 22(11):6005–6022CrossRef
20.
Zurück zum Zitat Sahoo BB, Jha R, Singh A, Kumar D (2019) Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophys 67(5):1471–1481CrossRef Sahoo BB, Jha R, Singh A, Kumar D (2019) Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophys 67(5):1471–1481CrossRef
21.
Zurück zum Zitat Hu C, Wu Q, Li H, Jian S, Li N, Lou Z (2018) Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11):1543CrossRef Hu C, Wu Q, Li H, Jian S, Li N, Lou Z (2018) Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11):1543CrossRef
22.
Zurück zum Zitat Farhi N, Kohen E, Mamane H, Shavitt Y (2021) Prediction of wastewater treatment quality using LSTM neural network. Environ Technol Innov 23:101632CrossRef Farhi N, Kohen E, Mamane H, Shavitt Y (2021) Prediction of wastewater treatment quality using LSTM neural network. Environ Technol Innov 23:101632CrossRef
23.
Zurück zum Zitat Hunt K M, Matthews GR, Pappenberger F, Prudhomme C (2022) Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States. Hydrology and Earth System Sciences Discussions, 1–30. Hunt K M, Matthews GR, Pappenberger F, Prudhomme C (2022) Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States. Hydrology and Earth System Sciences Discussions, 1–30.
24.
Zurück zum Zitat Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:​1406.​1078.
25.
Zurück zum Zitat Kalchbrenner N, Blunsom P (2013, October) Recurrent continuous translation models. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1700–1709 Kalchbrenner N, Blunsom P (2013, October) Recurrent continuous translation models. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1700–1709
26.
Zurück zum Zitat Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112
27.
Zurück zum Zitat Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:​1409.​0473.
28.
Zurück zum Zitat Ding Y, Zhu Y, Feng J, Zhang P, Cheng Z (2020) Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403:348–359CrossRef Ding Y, Zhu Y, Feng J, Zhang P, Cheng Z (2020) Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403:348–359CrossRef
29.
Zurück zum Zitat Ran X, Shan Z, Fang Y, Lin C (2019) An LSTM-based method with attention mechanism for travel time prediction. Sensors 19(4):861CrossRef Ran X, Shan Z, Fang Y, Lin C (2019) An LSTM-based method with attention mechanism for travel time prediction. Sensors 19(4):861CrossRef
30.
Zurück zum Zitat Wang S, Wang X, Wang S, Wang D (2019) Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int J Electr Power Energy Syst 109:470–479CrossRef Wang S, Wang X, Wang S, Wang D (2019) Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int J Electr Power Energy Syst 109:470–479CrossRef
31.
Zurück zum Zitat Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:​1409.​1259.
32.
Zurück zum Zitat Habimana O, Li Y, Li R, Gu X, Yan W (2020) Attentive convolutional gated recurrent network: a contextual model to sentiment analysis. Int J Mach Learn Cybern 11:2637–2651CrossRef Habimana O, Li Y, Li R, Gu X, Yan W (2020) Attentive convolutional gated recurrent network: a contextual model to sentiment analysis. Int J Mach Learn Cybern 11:2637–2651CrossRef
33.
Zurück zum Zitat Ding G, Qin L (2020) Study on the prediction of stock price based on the associated network model of LSTM. Int J Mach Learn Cybern 11(6):1307–1317CrossRef Ding G, Qin L (2020) Study on the prediction of stock price based on the associated network model of LSTM. Int J Mach Learn Cybern 11(6):1307–1317CrossRef
34.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRefMATH Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRefMATH
36.
Zurück zum Zitat Bhosale YH, Patnaik KS (2022, May) IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using RaspberryPi. In: 2022 international conference on IoT and blockchain technology (ICIBT). IEEE, pp 1–6 Bhosale YH, Patnaik KS (2022, May) IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using RaspberryPi. In: 2022 international conference on IoT and blockchain technology (ICIBT). IEEE, pp 1–6
Metadaten
Titel
LSTM with spatiotemporal attention for IoT-based wireless sensor collected hydrological time-series forecasting
verfasst von
Jianying Huang
Jinhui Li
Jeill Oh
Hoon Kang
Publikationsdatum
23.04.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 10/2023
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01836-3

Weitere Artikel der Ausgabe 10/2023

International Journal of Machine Learning and Cybernetics 10/2023 Zur Ausgabe

Neuer Inhalt