Skip to main content
Erschienen in: Soft Computing 4/2019

01.02.2018 | Methodologies and Application

Lyapunov–Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems

verfasst von: Sehraneh Ghaemi, Kamel Sabahi, Mohammad Ali Badamchizadeh

Erschienen in: Soft Computing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a type-2 fuzzy neural network (T2FNN) controller has been designed for a class of nonlinear time-delay systems using the feedback error learning (FEL) approach. In the FEL strategy, the T2FNN controller is in the feedforward path to overcome the nonlinearity and time delay and a classical controller is in the feedback path to guarantee the stability of the controlled system. Using the Lyapunov–Krasovskii stability theorem, the adaptation rules for training of T2FNN controller have been achieved in a way that, in the presence of the unknown disturbance and time-varying delay, the tacking error becomes zero. In the proposed stability criteria and adaptation laws, since just the training error is utilized, i.e., the mathematical model of the system or its parameters is not needed, the overall training and control algorithm is computationally simple. In the present study, the effect of delay has been considered in tuning the T2FNN parameters and, therefore, the performance of the proposed controller has been improved. The proposed strategy has been applied to systems with time-varying input delay and measurement noise and compared with indirect type-1 fuzzy sliding controller. The effectiveness of the proposed controller is shown by some simulation results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abid H, Toumi A (2016) Adaptive fuzzy sliding mode controller for a class of SISO nonlinear time-delay systems. Soft Comput 20:649–659CrossRefMATH Abid H, Toumi A (2016) Adaptive fuzzy sliding mode controller for a class of SISO nonlinear time-delay systems. Soft Comput 20:649–659CrossRefMATH
Zurück zum Zitat Abiyev RH, Kaynak O (2010) Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans Ind Electron 57:4147–4159CrossRef Abiyev RH, Kaynak O (2010) Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans Ind Electron 57:4147–4159CrossRef
Zurück zum Zitat Almaraashi M, John R, Hopgood A, Ahmadi S (2016) Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice. Inf Sci 360:21–42CrossRef Almaraashi M, John R, Hopgood A, Ahmadi S (2016) Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice. Inf Sci 360:21–42CrossRef
Zurück zum Zitat Almohammadi K, Hagras H, Alghazzawi D, Aldabbagh G (2016) A zSlices-based general type-2 fuzzy logic system for users-centric adaptive learning in large-scale e-learning platforms. Soft Comput 21:6859–6880CrossRef Almohammadi K, Hagras H, Alghazzawi D, Aldabbagh G (2016) A zSlices-based general type-2 fuzzy logic system for users-centric adaptive learning in large-scale e-learning platforms. Soft Comput 21:6859–6880CrossRef
Zurück zum Zitat Amador-Angulo L, Castillo O (2016) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22:571–594CrossRef Amador-Angulo L, Castillo O (2016) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22:571–594CrossRef
Zurück zum Zitat Antão R, Mota A, Martins RE (2016) Model-based control using interval type-2 fuzzy logic systems. Soft Comput 22(2):607–620 Antão R, Mota A, Martins RE (2016) Model-based control using interval type-2 fuzzy logic systems. Soft Comput 22(2):607–620
Zurück zum Zitat Arefi MM, Zarei J, Karimi HR (2014) Adaptive output feedback neural network control of uncertain non-affine systems with unknown control direction. J Frankl Inst 351:4302–4316MathSciNetCrossRefMATH Arefi MM, Zarei J, Karimi HR (2014) Adaptive output feedback neural network control of uncertain non-affine systems with unknown control direction. J Frankl Inst 351:4302–4316MathSciNetCrossRefMATH
Zurück zum Zitat Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer, New YorkCrossRefMATH Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer, New YorkCrossRefMATH
Zurück zum Zitat Biglarbegian M, Melek W, Mendel JM (2011) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electr 58:1371–1384CrossRef Biglarbegian M, Melek W, Mendel JM (2011) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electr 58:1371–1384CrossRef
Zurück zum Zitat Boyd SP, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, PhiladelphiaCrossRefMATH Boyd SP, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, PhiladelphiaCrossRefMATH
Zurück zum Zitat Castillo O, Melin P, Alanis A, Montiel O, Sepúlveda R (2011) Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput 15:1145–1160CrossRef Castillo O, Melin P, Alanis A, Montiel O, Sepúlveda R (2011) Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput 15:1145–1160CrossRef
Zurück zum Zitat Du H, Zhang N (2009) Controller design for time-delay systems using genetic algorithms. Eng Appl Artif Intell 22:397–400CrossRef Du H, Zhang N (2009) Controller design for time-delay systems using genetic algorithms. Eng Appl Artif Intell 22:397–400CrossRef
Zurück zum Zitat Gao Q, Feng G, Xi Z, Wang Y, Qiu J (2014) Robust control of T-S fuzzy time-delay systems via a new sliding-mode control scheme. IEEE Trans Fuzzy Syst 22:459–465CrossRef Gao Q, Feng G, Xi Z, Wang Y, Qiu J (2014) Robust control of T-S fuzzy time-delay systems via a new sliding-mode control scheme. IEEE Trans Fuzzy Syst 22:459–465CrossRef
Zurück zum Zitat Guo L, Gu H, Zhang D (2010) Robust stability criteria for uncertain neutral system with interval time varying discrete delay. Asian J Control 12:739–745MathSciNetCrossRef Guo L, Gu H, Zhang D (2010) Robust stability criteria for uncertain neutral system with interval time varying discrete delay. Asian J Control 12:739–745MathSciNetCrossRef
Zurück zum Zitat Hale JK, Lunel SMV (2013) Introduction to functional differential equations. Springer, BerlinMATH Hale JK, Lunel SMV (2013) Introduction to functional differential equations. Springer, BerlinMATH
Zurück zum Zitat Ideta AM (2006) Stability of feedback error learning method with time delay. Neurocomputing 69:1645–1654CrossRef Ideta AM (2006) Stability of feedback error learning method with time delay. Neurocomputing 69:1645–1654CrossRef
Zurück zum Zitat Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185CrossRefMATH Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185CrossRefMATH
Zurück zum Zitat Khanesar MA, Kaynak O, Yin S, Gao H (2015a) Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans Fuzzy Syst 23:205–214CrossRef Khanesar MA, Kaynak O, Yin S, Gao H (2015a) Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans Fuzzy Syst 23:205–214CrossRef
Zurück zum Zitat Khanesar MA, Kayacan E, Reyhanoglu M, Kaynak O (2015b) Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions. IEEE Trans Cybern 45:858–868CrossRef Khanesar MA, Kayacan E, Reyhanoglu M, Kaynak O (2015b) Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions. IEEE Trans Cybern 45:858–868CrossRef
Zurück zum Zitat Koo GB, Park JB, Joo YH (2014) Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans Fuzzy Syst 22:406–419CrossRef Koo GB, Park JB, Joo YH (2014) Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans Fuzzy Syst 22:406–419CrossRef
Zurück zum Zitat Kumbasar T (2014) A simple design method for interval type-2 fuzzy PID controllers. Soft Comput 18:1293–1304CrossRef Kumbasar T (2014) A simple design method for interval type-2 fuzzy PID controllers. Soft Comput 18:1293–1304CrossRef
Zurück zum Zitat Lin T-C, Roopaei M (2010) Based on interval type-2 adaptive fuzzy \(\text{ H }\infty \) tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simul 15:4065–4075MathSciNetCrossRefMATH Lin T-C, Roopaei M (2010) Based on interval type-2 adaptive fuzzy \(\text{ H }\infty \) tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simul 15:4065–4075MathSciNetCrossRefMATH
Zurück zum Zitat Liu Y-J, Tong S (2016) Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64:70–75MathSciNetCrossRefMATH Liu Y-J, Tong S (2016) Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64:70–75MathSciNetCrossRefMATH
Zurück zum Zitat Liu Y-J, Tong S, Li D-J, Gao Y (2015) Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Trans Fuzzy Syst 24:1147–1158CrossRef Liu Y-J, Tong S, Li D-J, Gao Y (2015) Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Trans Fuzzy Syst 24:1147–1158CrossRef
Zurück zum Zitat Maldonado Y, Castillo O, Melin P (2013) Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl Soft Comput 13:496–508CrossRef Maldonado Y, Castillo O, Melin P (2013) Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl Soft Comput 13:496–508CrossRef
Zurück zum Zitat Marouf S, Esfanjani RM, Akbari A, Barforooshan M (2016) T-S fuzzy controller design for stabilization of nonlinear networked control systems. Eng Appl Artif Intell 50:135–141CrossRef Marouf S, Esfanjani RM, Akbari A, Barforooshan M (2016) T-S fuzzy controller design for stabilization of nonlinear networked control systems. Eng Appl Artif Intell 50:135–141CrossRef
Zurück zum Zitat Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear adaptive control. Neural Netw 17:1453–1465CrossRefMATH Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear adaptive control. Neural Netw 17:1453–1465CrossRefMATH
Zurück zum Zitat Perez J, Valdez F, Castillo O, Melin P, Gonzalez C, Martinez G (2017) Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput 21:667–685CrossRef Perez J, Valdez F, Castillo O, Melin P, Gonzalez C, Martinez G (2017) Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput 21:667–685CrossRef
Zurück zum Zitat Poursamad A, Davaie-Markazi AH (2009) Robust adaptive fuzzy control of unknown chaotic systems. Appl Soft Comput 9:970–976CrossRef Poursamad A, Davaie-Markazi AH (2009) Robust adaptive fuzzy control of unknown chaotic systems. Appl Soft Comput 9:970–976CrossRef
Zurück zum Zitat Ruan X, Ding M, Gong D, Qiao J (2007) On-line adaptive control for inverted pendulum balancing based on feedback-error-learning. Neurocomputing 70:770–776CrossRef Ruan X, Ding M, Gong D, Qiao J (2007) On-line adaptive control for inverted pendulum balancing based on feedback-error-learning. Neurocomputing 70:770–776CrossRef
Zurück zum Zitat Sabahi K, Ghaemi S, Pezeshki S (2014) Application of type-2 fuzzy logic system for load frequency control using feedback error learning approaches. Appl Soft Comput 21:1–11CrossRef Sabahi K, Ghaemi S, Pezeshki S (2014) Application of type-2 fuzzy logic system for load frequency control using feedback error learning approaches. Appl Soft Comput 21:1–11CrossRef
Zurück zum Zitat Saravanakumar R, Ali MS, Hua M (2016) H\(\infty \) state estimation of stochastic neural networks with mixed time-varying delays. Soft Comput 20:3475–3487CrossRefMATH Saravanakumar R, Ali MS, Hua M (2016) H\(\infty \) state estimation of stochastic neural networks with mixed time-varying delays. Soft Comput 20:3475–3487CrossRefMATH
Zurück zum Zitat Sheng L, Ma X (2014) Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int J Syst Sci 45:977–993MathSciNetCrossRefMATH Sheng L, Ma X (2014) Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int J Syst Sci 45:977–993MathSciNetCrossRefMATH
Zurück zum Zitat Singh M, Srivastava S, Hanmandlu M, Gupta J (2009) Type-2 fuzzy wavelet networks (T2FWN) for system identification using fuzzy differential and Lyapunov stability algorithm. Appl Soft Comput 9:977–989CrossRef Singh M, Srivastava S, Hanmandlu M, Gupta J (2009) Type-2 fuzzy wavelet networks (T2FWN) for system identification using fuzzy differential and Lyapunov stability algorithm. Appl Soft Comput 9:977–989CrossRef
Zurück zum Zitat Smith OJ (1959) A controller to overcome dead time. ISA J 6:28–33 Smith OJ (1959) A controller to overcome dead time. ISA J 6:28–33
Zurück zum Zitat Tsai S-H, Chen Y-A, Lo J-C (2016) A novel stabilization condition for a class of T-S fuzzy time-delay systems. Neurocomputing 175:223–232CrossRef Tsai S-H, Chen Y-A, Lo J-C (2016) A novel stabilization condition for a class of T-S fuzzy time-delay systems. Neurocomputing 175:223–232CrossRef
Zurück zum Zitat Yu Z, Li S (2014) Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions. Neurocomputing 129:540–547CrossRef Yu Z, Li S (2014) Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions. Neurocomputing 129:540–547CrossRef
Zurück zum Zitat Zhou Q, Wu C, Jing X, Wang L (2016) Adaptive fuzzy backstepping dynamic surface control for nonlinear Input-delay systems. Neurocomputing 199:58–65CrossRef Zhou Q, Wu C, Jing X, Wang L (2016) Adaptive fuzzy backstepping dynamic surface control for nonlinear Input-delay systems. Neurocomputing 199:58–65CrossRef
Zurück zum Zitat Zhu Q, Zhang T, Yang Y (2012) New results on adaptive neural control of a class of nonlinear systems with uncertain input delay. Neurocomputing 83:22–30CrossRef Zhu Q, Zhang T, Yang Y (2012) New results on adaptive neural control of a class of nonlinear systems with uncertain input delay. Neurocomputing 83:22–30CrossRef
Zurück zum Zitat Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers, trans. ASME, 64 Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers, trans. ASME, 64
Metadaten
Titel
Lyapunov–Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems
verfasst von
Sehraneh Ghaemi
Kamel Sabahi
Mohammad Ali Badamchizadeh
Publikationsdatum
01.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 4/2019
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3053-9

Weitere Artikel der Ausgabe 4/2019

Soft Computing 4/2019 Zur Ausgabe

Methodologies and Application

Uncertain vertex coloring problem