Skip to main content

2024 | OriginalPaper | Buchkapitel

Machine Learning-Based Path Loss Estimation Model for a 2.4 GHz ZigBee Network

verfasst von : Prashanth Ragam, Guntha Karthik, B. N. Jagadesh, Sankati Jyothi

Erschienen in: High Performance Computing, Smart Devices and Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) and Internet of Things (IoT) have received remarkable attention from the past few years in various applications. Modeling of path loss (PL) for the deployment of a developed WSN system is a crucial task owing to the time-consuming and elegant operation. However, radiofrequency (RF) engineers adopted either deterministic or stochastic empirical models to estimate the PL. In general, empirical models utilize predefined influenced parameters including path loss (dB), path loss exponent (\(\Upsilon \)), and other significant parameters. Although, empirical models differ significantly from original measurement due to consideration of different terrains. In this study, an endeavor has been made to develop a machine learning-based model to estimate the path loss for a standard ZigBee communication network operating on a 2.4 GHz carrier frequency deployed in an urban area. An experimental setup was designed and tested in line-of-sight (LOS) and non-line-of-sight (NLOS) conditions to collect the influence parameters such as received signal strength indicator (RSSI), frequency, distance, and transmitter antenna gain. Besides that, environmental parameters such as temperature and humidity are also included. In this context, a three-layer, feed-forward back-propagation multilayer perception neural network (BPNN) machine learning and Log-Distance empirical models were employed to estimate the PL. The obtained results reveal that the BPNN model noticeably enhanced the coefficient of determination (R2) and reduced root mean square error (RMSE) compared with the empirical model. The R2 and RMSE metrics were obtained as 0.97220 and 0.03630 in the NLOS scenario as well as 0.99820 and 0.00773 in the LOS environment, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Popola SI, Atavero AA, Arausi OD, Matthews VO (2018) Path loss dataset for modeling radio wave propagation in smart campus environment. Data Brief 17:1062–1073CrossRef Popola SI, Atavero AA, Arausi OD, Matthews VO (2018) Path loss dataset for modeling radio wave propagation in smart campus environment. Data Brief 17:1062–1073CrossRef
2.
Zurück zum Zitat Jawad HM, Jawad AM, Nardin R, Gharghan SK, Abdullah NF, Ismail M, Abu-AlShaeer MJ (2019) Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sens J 20:552–561 Jawad HM, Jawad AM, Nardin R, Gharghan SK, Abdullah NF, Ismail M, Abu-AlShaeer MJ (2019) Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sens J 20:552–561
3.
Zurück zum Zitat Pan H, Shi Y, Wang X, Li T (2017) Modeling wireless sensor networks radio frequency signal loss in corn environment. Multimed Tools Appl 76(19):19479–19490 Pan H, Shi Y, Wang X, Li T (2017) Modeling wireless sensor networks radio frequency signal loss in corn environment. Multimed Tools Appl 76(19):19479–19490
4.
Zurück zum Zitat Egi Y, Otero K (2019) Machine-learning and 3D point-cloud based signal power path loss model for the deployment of wireless communication systems. IEEE Access 7:42507–42517CrossRef Egi Y, Otero K (2019) Machine-learning and 3D point-cloud based signal power path loss model for the deployment of wireless communication systems. IEEE Access 7:42507–42517CrossRef
5.
Zurück zum Zitat Jo HS, Park C, Lee E, Choi HK, Park J (2020) Path loss prediction based on machine learning techniques: principal component analysis, artificial neural network, and Gaussian process. Sensors 20(7):1–23CrossRef Jo HS, Park C, Lee E, Choi HK, Park J (2020) Path loss prediction based on machine learning techniques: principal component analysis, artificial neural network, and Gaussian process. Sensors 20(7):1–23CrossRef
6.
Zurück zum Zitat Correia FP, Alencar MS, Carvalho FB, Lopes WT, Leal BG (2013) Propagation analysis in precision agriculture environment using XBee devices. In: 2013 SBMO/IEEE MTT-S international microwave & optoelectronics conference (IMOC). IEEE, Brazil, pp 1–5 Correia FP, Alencar MS, Carvalho FB, Lopes WT, Leal BG (2013) Propagation analysis in precision agriculture environment using XBee devices. In: 2013 SBMO/IEEE MTT-S international microwave & optoelectronics conference (IMOC). IEEE, Brazil, pp 1–5
7.
Zurück zum Zitat Wang D, Song L, Kong X, Zhang Z (2012) Near-ground path loss measurements and modeling for wireless sensor networks at 2.4 GHz. Int J Distrib Sens Netw 8(8):969712 Wang D, Song L, Kong X, Zhang Z (2012) Near-ground path loss measurements and modeling for wireless sensor networks at 2.4 GHz. Int J Distrib Sens Netw 8(8):969712
8.
Zurück zum Zitat Sarma AD, Pandit SNN, Prasad MVSN (2000) Modelling of path loss using adaptive propagation technique for land mobile CM and MM wave communication systems. IETE Tech Rev 17(1–2):37–41 Sarma AD, Pandit SNN, Prasad MVSN (2000) Modelling of path loss using adaptive propagation technique for land mobile CM and MM wave communication systems. IETE Tech Rev 17(1–2):37–41
9.
Zurück zum Zitat Ragam P, Nimaje DS, Yadav D, Karthik G (2019) Performance evaluation of LoRa LPWAN technology for IoT-based blast-induced ground vibration system. J Meas Eng 7(3):119–133 Ragam P, Nimaje DS, Yadav D, Karthik G (2019) Performance evaluation of LoRa LPWAN technology for IoT-based blast-induced ground vibration system. J Meas Eng 7(3):119–133
10.
Zurück zum Zitat Nguyen H, Bui XN, Nguyen-Thoi T, Ragam P, Moayedi H (2019) Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model. Appl Sci 9(21):4554CrossRef Nguyen H, Bui XN, Nguyen-Thoi T, Ragam P, Moayedi H (2019) Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model. Appl Sci 9(21):4554CrossRef
11.
Zurück zum Zitat Ragam P, Nimaje DS (2018) Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: a case study. Noise Vib Worldwide 49(3):111–119CrossRef Ragam P, Nimaje DS (2018) Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: a case study. Noise Vib Worldwide 49(3):111–119CrossRef
Metadaten
Titel
Machine Learning-Based Path Loss Estimation Model for a 2.4 GHz ZigBee Network
verfasst von
Prashanth Ragam
Guntha Karthik
B. N. Jagadesh
Sankati Jyothi
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6690-5_11

Premium Partner