Skip to main content

2022 | OriginalPaper | Buchkapitel

Machine Learning Classifiers Based on Dimensionality Reduction Techniques for the Early Diagnosis of Alzheimer’s Disease Using Magnetic Resonance Imaging and Positron Emission Tomography Brain Data

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning techniques have become more attractive and widely used for medical image processing purposes. In particular, the diagnosis of neurodegenerative diseases has recently shown a potential field of application for these methods. The performance comparison of a unique algorithm in various study contexts can be biased, which usually leads to incorrect results. In this context, this study consists in comparing the performance of different machine learning techniques, identifying their main trends and their application for the diagnosis of Alzheimer’s disease (AD). We presented a computer-aided diagnosis system for the early diagnosis of AD by analyzing brain data from the OASIS dataset. The principal component analysis (PCA) and the uniform manifold approximation and projection (UMAP) technique have been evaluated on the magnetic resonance imaging and positron emission tomography images as feature selection techniques. After that, the features are fed into nine machine learning models namely Support vector machine (SVM), Artificial neural networks, Decision trees, Random Forests, Discriminant analysis, Regression analysis, Naive Bayes, k-Nearest neighbors, and Ensemble learning. The performance of the proposed classifiers is investigated by the confusion matrix. In addition, area under the curve, Matthews correlation coefficient, accuracy, and F1-score metrics are calculated regarding this matrix. Our results indicate that the SVM-PCA/UMAP schemes provide a significant advantage over the other classifiers. Moreover, they are more efficient than the baseline model based on the voxels-as-features reference feature extraction approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Herrmann, N., Harimoto, T., Balshaw, R., Lanctôt, K.L.: Canadian outcomes study in dementia (COSID) investigators: risk factors for progression of Alzheimer disease in a Canadian population: the Canadian outcomes study in dementia (COSID). Canadian journal of psychiatry. Revue canadienne de psychiatrie 60(4), 189–199 (2015) Herrmann, N., Harimoto, T., Balshaw, R., Lanctôt, K.L.: Canadian outcomes study in dementia (COSID) investigators: risk factors for progression of Alzheimer disease in a Canadian population: the Canadian outcomes study in dementia (COSID). Canadian journal of psychiatry. Revue canadienne de psychiatrie 60(4), 189–199 (2015)
4.
Zurück zum Zitat Salem, H., Soria, D., Lund, J.N., et al.: A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology. BMC Med. Inform. Decis. Mak. 21, 223 (2021)CrossRefPubMedPubMedCentral Salem, H., Soria, D., Lund, J.N., et al.: A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology. BMC Med. Inform. Decis. Mak. 21, 223 (2021)CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Lazli, L., Boukadoum, M., Aït-Mohamed, O.: A survey on computer-aided diagnosis of brain disorders through MRI based on machine learning and data mining methodologies with an emphasis on Alzheimer disease diagnosis and the contribution of the multimodal fusion. Appl. Sci. 10(5) (2020) Lazli, L., Boukadoum, M., Aït-Mohamed, O.: A survey on computer-aided diagnosis of brain disorders through MRI based on machine learning and data mining methodologies with an emphasis on Alzheimer disease diagnosis and the contribution of the multimodal fusion. Appl. Sci. 10(5) (2020)
6.
Zurück zum Zitat Biagetti, G., Crippa, P., Falaschetti, L., Luzzi, S., Santarelli, R., Turchetti, C.: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-bernstein polynomials algorithm. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2019. SIST, vol. 143, pp. 49–62. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8303-8_5CrossRef Biagetti, G., Crippa, P., Falaschetti, L., Luzzi, S., Santarelli, R., Turchetti, C.: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-bernstein polynomials algorithm. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2019. SIST, vol. 143, pp. 49–62. Springer, Singapore (2019). https://​doi.​org/​10.​1007/​978-981-13-8303-8_​5CrossRef
7.
Zurück zum Zitat Karami, V., Nittari, G., Amenta, F.: Neuroimaging computer-aided diagnosis systems for Alzheimer’s disease. Int. J. Imaging Syst. Technol. 29(1), 83–94 (2019) Karami, V., Nittari, G., Amenta, F.: Neuroimaging computer-aided diagnosis systems for Alzheimer’s disease. Int. J. Imaging Syst. Technol. 29(1), 83–94 (2019)
8.
Zurück zum Zitat Lazli, L., Boukadoum, M., Aït-Mohamed, O.: Computer-aided diagnosis system for Alzheimer’s disease using fuzzy-possibilistic tissue segmentation and SVM classification. In: 2018 IEEE Life Sciences Conference (LSC), Montréal, Canada, pp. 33–36 (2018) Lazli, L., Boukadoum, M., Aït-Mohamed, O.: Computer-aided diagnosis system for Alzheimer’s disease using fuzzy-possibilistic tissue segmentation and SVM classification. In: 2018 IEEE Life Sciences Conference (LSC), Montréal, Canada, pp. 33–36 (2018)
9.
Zurück zum Zitat Alvarez Fernandez, I., Aguilar, M., González, et al.: Clinic-based validation of cerebrospinal fluid biomarkers with florbetapir PET for diagnosis of dementia. J. Alzheimer’s Dis. 61, 1 9 (2018) Alvarez Fernandez, I., Aguilar, M., González, et al.: Clinic-based validation of cerebrospinal fluid biomarkers with florbetapir PET for diagnosis of dementia. J. Alzheimer’s Dis. 61, 1 9 (2018)
10.
Zurück zum Zitat Cheng, D., Liu, M.: CNNs based multi-modality classification for AD diagnosis. In: Proceedings of the 10th International Congress on Image and Signal Processing, Bio Medical Engineering and Informatics (CISP-BMEI), Shanghai, China, pp. 1–5 (2017) Cheng, D., Liu, M.: CNNs based multi-modality classification for AD diagnosis. In: Proceedings of the 10th International Congress on Image and Signal Processing, Bio Medical Engineering and Informatics (CISP-BMEI), Shanghai, China, pp. 1–5 (2017)
11.
Zurück zum Zitat Kavitha, C., Vinodhini, M., Srividhya, S.R., et al.: Early-stage Alzheimer’s disease prediction using machine learning models. Front. Public Health 10 (2022) Kavitha, C., Vinodhini, M., Srividhya, S.R., et al.: Early-stage Alzheimer’s disease prediction using machine learning models. Front. Public Health 10 (2022)
12.
Zurück zum Zitat Suhaira, V.P., Sita, S., Joby, G.: Alzheimer’s disease: classification and detection using MRI dataset. Int. J. Innov. Technol. Explor. Eng. 10(5) (2021) Suhaira, V.P., Sita, S., Joby, G.: Alzheimer’s disease: classification and detection using MRI dataset. Int. J. Innov. Technol. Explor. Eng. 10(5) (2021)
14.
Zurück zum Zitat Amulya, E.R., Varma, S., Paul, V.: Classification of brain MR images using texture feature extraction. Int. J. Comput. Sci. Eng. 5(5), 1722–1729 (2017) Amulya, E.R., Varma, S., Paul, V.: Classification of brain MR images using texture feature extraction. Int. J. Comput. Sci. Eng. 5(5), 1722–1729 (2017)
15.
Zurück zum Zitat Gray, K.R.: Machine learning for image-based classification of Alzheimer’s disease. Ph.D. thesis, Imperial College London (2012) Gray, K.R.: Machine learning for image-based classification of Alzheimer’s disease. Ph.D. thesis, Imperial College London (2012)
16.
Zurück zum Zitat Klöppel, S., Stonnington, C.M., Chu, C., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)CrossRefPubMed Klöppel, S., Stonnington, C.M., Chu, C., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)CrossRefPubMed
17.
Zurück zum Zitat Magnin, B., Mesrob, L., Kinkingnéhun, S., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)CrossRefPubMed Magnin, B., Mesrob, L., Kinkingnéhun, S., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)CrossRefPubMed
18.
Zurück zum Zitat Vemuri, P., Gunter, J.L., Senjem, M.L., et al.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39(3), 1186–1197 (2008)CrossRefPubMed Vemuri, P., Gunter, J.L., Senjem, M.L., et al.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39(3), 1186–1197 (2008)CrossRefPubMed
19.
Zurück zum Zitat Saratxaga, C.L., Moya, I., Picón, A., et al.: MRI Deep learning-based solution for Alzheimer’s disease prediction. J. Pers. Med. 11, 902 (2021)CrossRefPubMedPubMedCentral Saratxaga, C.L., Moya, I., Picón, A., et al.: MRI Deep learning-based solution for Alzheimer’s disease prediction. J. Pers. Med. 11, 902 (2021)CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Basheer, S., Bhatia, S., Sakri, S.B.: Computational modeling of dementia prediction using deep neural network: analysis on OASIS dataset. IEEE Access 9, 42449–42462 (2021)CrossRef Basheer, S., Bhatia, S., Sakri, S.B.: Computational modeling of dementia prediction using deep neural network: analysis on OASIS dataset. IEEE Access 9, 42449–42462 (2021)CrossRef
21.
Zurück zum Zitat Lazli, L., Boukadoum, M., Ait-Mohamed, O.: Computer-aided diagnosis system of Alzheimer’s disease based on multimodal fusion: tissue quantification based on the hybrid fuzzy-genetic-possibilistic model and discriminative classification based on the SVDD model. Brain Sci. 9(10), 289 (2019)CrossRefPubMedPubMedCentral Lazli, L., Boukadoum, M., Ait-Mohamed, O.: Computer-aided diagnosis system of Alzheimer’s disease based on multimodal fusion: tissue quantification based on the hybrid fuzzy-genetic-possibilistic model and discriminative classification based on the SVDD model. Brain Sci. 9(10), 289 (2019)CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Marcus, D.S., Wang, T.H., Parker, J., et al.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cognit. Neurosci 19(9), 1498–1507 (2007)CrossRef Marcus, D.S., Wang, T.H., Parker, J., et al.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cognit. Neurosci 19(9), 1498–1507 (2007)CrossRef
23.
Zurück zum Zitat Chicco, D., Giuseppe, J.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 6 (2020) Chicco, D., Giuseppe, J.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 6 (2020)
27.
Zurück zum Zitat Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374(2065) (2016) Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374(2065) (2016)
28.
Zurück zum Zitat Kwok, H., Lai Guan, N., Ginhoux, F., Newell, E.W.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38 44 (2019) Kwok, H., Lai Guan, N., Ginhoux, F., Newell, E.W.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38 44 (2019)
29.
Zurück zum Zitat Tharwat, A., Gaber, T., Abdelhameed, I., Aboul Ella H.: Linear discriminant analysis: a detailed tutorial. AI Commun. 30, 169–190 (2017) Tharwat, A., Gaber, T., Abdelhameed, I., Aboul Ella H.: Linear discriminant analysis: a detailed tutorial. AI Commun. 30, 169–190 (2017)
30.
Zurück zum Zitat Hosmer Jr., DW., Lemeshow, S., Sturdivant, RX.: Applied Logistic Regression. Wiley, New York (2013) Hosmer Jr., DW., Lemeshow, S., Sturdivant, RX.: Applied Logistic Regression. Wiley, New York (2013)
31.
Zurück zum Zitat Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22, pp. 41–46. IBM, New York (2001) Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22, pp. 41–46. IBM, New York (2001)
32.
Zurück zum Zitat Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13(1), 21–27 (1967)CrossRef Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13(1), 21–27 (1967)CrossRef
33.
Zurück zum Zitat Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)CrossRef Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)CrossRef
34.
35.
Zurück zum Zitat Ayerdi, B., Savio, A., Graña, M.: Meta-ensembles of classifiers for Alzheimer’s disease detection using independent ROI features. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7931, pp. 122–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38622-0_13CrossRef Ayerdi, B., Savio, A., Graña, M.: Meta-ensembles of classifiers for Alzheimer’s disease detection using independent ROI features. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7931, pp. 122–130. Springer, Heidelberg (2013). https://​doi.​org/​10.​1007/​978-3-642-38622-0_​13CrossRef
Metadaten
Titel
Machine Learning Classifiers Based on Dimensionality Reduction Techniques for the Early Diagnosis of Alzheimer’s Disease Using Magnetic Resonance Imaging and Positron Emission Tomography Brain Data
verfasst von
Lilia Lazli
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-20837-9_10

Premium Partner