Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Macroporous Hydrogels: Preparation, Properties, and Applications

verfasst von : Maria Valentina Dinu, Ecaterina Stela Dragan

Erschienen in: Hydrogels

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter will be focused on the latest developments in the preparation and properties of macroporous hydrogels (MHGs), and their potential for biomedical applications and separation processes. A wide variety of synthetic and natural polymers have been used for the fabrication of novel macroporous hydrogels. Their morphology could be tailored by the synthesis strategy and synthesis parameters such as initial monomer concentration, cross-linking degree, and gel preparation temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aminabhavi TM, Nadagouda MN, More UA, Joshi SD, Kulkarni VH, Noolvi MN, Kulkarni PV (2015) Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Delivery 12:669–688CrossRef Aminabhavi TM, Nadagouda MN, More UA, Joshi SD, Kulkarni VH, Noolvi MN, Kulkarni PV (2015) Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Delivery 12:669–688CrossRef
Zurück zum Zitat Andaç M, Galaev IY, Denizli A (2016) Affinity based and molecularly imprinted cryogels: applications in biomacromolecule purification. J Chromatogr B 1021:69–80CrossRef Andaç M, Galaev IY, Denizli A (2016) Affinity based and molecularly imprinted cryogels: applications in biomacromolecule purification. J Chromatogr B 1021:69–80CrossRef
Zurück zum Zitat Apopei DF, Dragan ES (2013) Semi-interpenetrating polymer networks based on polyacrylamide and starch or modified starch. J Nanostruct Polym Nanocompos 9:16–20 Apopei DF, Dragan ES (2013) Semi-interpenetrating polymer networks based on polyacrylamide and starch or modified starch. J Nanostruct Polym Nanocompos 9:16–20
Zurück zum Zitat Apopei DF, Dinu MV, Trochimczuk A, Dragan ES (2012) Sorption isotherms of heavy metal ions onto semi-IPN cryogels based on polyacrylamide and anionically modified potato starch. Ind Eng Chem Res 51:10462–10471CrossRef Apopei DF, Dinu MV, Trochimczuk A, Dragan ES (2012) Sorption isotherms of heavy metal ions onto semi-IPN cryogels based on polyacrylamide and anionically modified potato starch. Ind Eng Chem Res 51:10462–10471CrossRef
Zurück zum Zitat Argun A, Can V, Altun U, Okay O (2014) Nonionic double and triple network hydrogels of high mechanical strength. Macromolecules 47:6430–6440CrossRef Argun A, Can V, Altun U, Okay O (2014) Nonionic double and triple network hydrogels of high mechanical strength. Macromolecules 47:6430–6440CrossRef
Zurück zum Zitat Autissier A, Visage CL, Pouzet C, Chaubet F, Letourneur D (2010) Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 6:3640–3648PubMedCrossRef Autissier A, Visage CL, Pouzet C, Chaubet F, Letourneur D (2010) Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 6:3640–3648PubMedCrossRef
Zurück zum Zitat Bai H, Polini A, Delattre B, Tomsia AP (2013) Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chem Mater 25:4551–4556PubMedPubMedCentralCrossRef Bai H, Polini A, Delattre B, Tomsia AP (2013) Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chem Mater 25:4551–4556PubMedPubMedCentralCrossRef
Zurück zum Zitat Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D Biofabrication strategies for TE and regenerative medicine. Annu Rev Biomed Eng 16:247–276PubMedPubMedCentralCrossRef Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D Biofabrication strategies for TE and regenerative medicine. Annu Rev Biomed Eng 16:247–276PubMedPubMedCentralCrossRef
Zurück zum Zitat Bencherif SA, Braschler TM, Renaud P (2013) Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. J Periodontal Implant Sci 43:251–261PubMedPubMedCentralCrossRef Bencherif SA, Braschler TM, Renaud P (2013) Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. J Periodontal Implant Sci 43:251–261PubMedPubMedCentralCrossRef
Zurück zum Zitat Berillo D, Volkova N (2014) Preparation and physicochemical characteristics of cryogel based on gelatin and oxidised dextran. J Mater Sci 49:4855–4868CrossRef Berillo D, Volkova N (2014) Preparation and physicochemical characteristics of cryogel based on gelatin and oxidised dextran. J Mater Sci 49:4855–4868CrossRef
Zurück zum Zitat Berillo D, Mattiasson B, Kirsebom H (2014) Cryogelation of chitosan using noble-metal ions: in situ formation of nanoparticles. Biomacromolecules 15:2246–2255PubMedCrossRef Berillo D, Mattiasson B, Kirsebom H (2014) Cryogelation of chitosan using noble-metal ions: in situ formation of nanoparticles. Biomacromolecules 15:2246–2255PubMedCrossRef
Zurück zum Zitat Bilici C, Karayel S, Demir TT, Okay O (2010) Self-oscillating pH-responsive cryogels as possible candidates of soft materials for generating mechanical energy. J Appl Polym Sci 118:2981–2988CrossRef Bilici C, Karayel S, Demir TT, Okay O (2010) Self-oscillating pH-responsive cryogels as possible candidates of soft materials for generating mechanical energy. J Appl Polym Sci 118:2981–2988CrossRef
Zurück zum Zitat Capes JS, Ando HY, Cameron RE (2005) Fabrication of polymeric scaffolds with a controlled distribution of pores. J Mater Sci Mater Med 16:1069–1075PubMedCrossRef Capes JS, Ando HY, Cameron RE (2005) Fabrication of polymeric scaffolds with a controlled distribution of pores. J Mater Sci Mater Med 16:1069–1075PubMedCrossRef
Zurück zum Zitat Caykara T, Kucuktepe S, Turan E (2007) Swelling characteristics of thermo-sensitive poly[(2-diethylaminoethyl methacrylate)-co-(N, N-dimethylacrylamide)] porous hydrogels. Polym Int 56:532–537CrossRef Caykara T, Kucuktepe S, Turan E (2007) Swelling characteristics of thermo-sensitive poly[(2-diethylaminoethyl methacrylate)-co-(N, N-dimethylacrylamide)] porous hydrogels. Polym Int 56:532–537CrossRef
Zurück zum Zitat Chatterjee P, Dai A, Yu H, Jiang H, Dai LL (2015) Thermal and mechanical properties of poly(N-isopropylacrylamide)-based hydrogels as a function of porosity and medium change. J Appl Polym Sci 132:42776–42768 Chatterjee P, Dai A, Yu H, Jiang H, Dai LL (2015) Thermal and mechanical properties of poly(N-isopropylacrylamide)-based hydrogels as a function of porosity and medium change. J Appl Polym Sci 132:42776–42768
Zurück zum Zitat Cheng SX, Zhang JT, Zhuo RX (2003) Macroporous poly(Nisopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J Biomed Mater Res A 67A:96–103CrossRef Cheng SX, Zhang JT, Zhuo RX (2003) Macroporous poly(Nisopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J Biomed Mater Res A 67A:96–103CrossRef
Zurück zum Zitat Chhatri A, Bajpai J, Bajpai AK, Sandhu SS, Jain N, Biswas J (2011) Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydr Polym 83:876–882CrossRef Chhatri A, Bajpai J, Bajpai AK, Sandhu SS, Jain N, Biswas J (2011) Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydr Polym 83:876–882CrossRef
Zurück zum Zitat Chiu YC, Kocagoz S, Larson JC, Brey EM (2013) Evaluation of physical and mechanical properties of porous poly (ethylene glycol)-co-(L-lactic acid) hydrogels during degradation. PLoS ONE 9:607–628 Chiu YC, Kocagoz S, Larson JC, Brey EM (2013) Evaluation of physical and mechanical properties of porous poly (ethylene glycol)-co-(L-lactic acid) hydrogels during degradation. PLoS ONE 9:607–628
Zurück zum Zitat Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Delivery Rev 59:249–262CrossRef Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Delivery Rev 59:249–262CrossRef
Zurück zum Zitat Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef
Zurück zum Zitat Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645PubMedCrossRef Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645PubMedCrossRef
Zurück zum Zitat Deze EG, Papageorgiou SK, Favva EP, Katsaros FK (2012) Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chem Eng J 209:537–546CrossRef Deze EG, Papageorgiou SK, Favva EP, Katsaros FK (2012) Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chem Eng J 209:537–546CrossRef
Zurück zum Zitat Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204CrossRef Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204CrossRef
Zurück zum Zitat Dinu MV, Perju MM, Dragan ES (2011a) Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness. Macromol Chem Phys 212:240–251CrossRef Dinu MV, Perju MM, Dragan ES (2011a) Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness. Macromol Chem Phys 212:240–251CrossRef
Zurück zum Zitat Dinu MV, Perju MM, Dragan ES (2011b) Composite IPN ionic hydrogels based on polyacrylamide and dextran sulfate. React Funct Polym 71:881–890CrossRef Dinu MV, Perju MM, Dragan ES (2011b) Composite IPN ionic hydrogels based on polyacrylamide and dextran sulfate. React Funct Polym 71:881–890CrossRef
Zurück zum Zitat Dinu MV, Perju MM, Cazacu M, Dragan ES (2011c) Polyacrylamide-dextran polymeric networks: effect of gel preparation temperature on their morphology and swelling properties. Cell Chem Technol 45:197–203 Dinu MV, Perju MM, Cazacu M, Dragan ES (2011c) Polyacrylamide-dextran polymeric networks: effect of gel preparation temperature on their morphology and swelling properties. Cell Chem Technol 45:197–203
Zurück zum Zitat Dinu MV, Schwarz S, Dinu IA, Dragan ES (2012) Comparative rheological study of ionic semi-IPN composite hydrogels based on polyacrylamide and dextran sulphate and of polyacrylamide hydrogels. Colloid Polym Sci 290:1647–1657CrossRef Dinu MV, Schwarz S, Dinu IA, Dragan ES (2012) Comparative rheological study of ionic semi-IPN composite hydrogels based on polyacrylamide and dextran sulphate and of polyacrylamide hydrogels. Colloid Polym Sci 290:1647–1657CrossRef
Zurück zum Zitat Dinu MV, Cazacu M, Dragan ES (2013a) Mechanical, thermal and surface properties of polyacrylamide/dextran semi-interpenetrating network hydrogels tuned by the synthesis temperature. Cent Eur J Chem 11:248–258 Dinu MV, Cazacu M, Dragan ES (2013a) Mechanical, thermal and surface properties of polyacrylamide/dextran semi-interpenetrating network hydrogels tuned by the synthesis temperature. Cent Eur J Chem 11:248–258
Zurück zum Zitat Dinu MV, Prádny M, Dragan ES, Michálek J (2013b) Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr Polym 94:170–178PubMedCrossRef Dinu MV, Prádny M, Dragan ES, Michálek J (2013b) Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr Polym 94:170–178PubMedCrossRef
Zurück zum Zitat Dinu MV, Prádny M, Dragan ES, Michálek J (2013c) Morphogical and swelling properties of porous hydrogels based on poly(hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. J Polym Res 20:275–285CrossRef Dinu MV, Prádny M, Dragan ES, Michálek J (2013c) Morphogical and swelling properties of porous hydrogels based on poly(hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. J Polym Res 20:275–285CrossRef
Zurück zum Zitat Dragan ES (2014a) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590CrossRef Dragan ES (2014a) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590CrossRef
Zurück zum Zitat Dragan ES (2014b) Advances in interpenetrating polymer network hydrogels and their applications. Pure Appl Chem 86:1707–1721CrossRef Dragan ES (2014b) Advances in interpenetrating polymer network hydrogels and their applications. Pure Appl Chem 86:1707–1721CrossRef
Zurück zum Zitat Dragan ES, Apopei DF (2011) Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem Eng J 178:252–263CrossRef Dragan ES, Apopei DF (2011) Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem Eng J 178:252–263CrossRef
Zurück zum Zitat Dragan ES, Apopei DF (2013a) Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch. Carbohydr Polym 92:23–32PubMedCrossRef Dragan ES, Apopei DF (2013a) Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch. Carbohydr Polym 92:23–32PubMedCrossRef
Zurück zum Zitat Dragan ES, Apopei-Loghin DF (2013b) Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chem Eng J 234:211–222CrossRef Dragan ES, Apopei-Loghin DF (2013b) Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chem Eng J 234:211–222CrossRef
Zurück zum Zitat Dragan ES, Cocarta AI (2016) Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs. ACS Appl Mater Interfaces 8:12018–12030PubMedCrossRef Dragan ES, Cocarta AI (2016) Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs. ACS Appl Mater Interfaces 8:12018–12030PubMedCrossRef
Zurück zum Zitat Dragan ES, Dinu MV (2013) Design, synthesis and interaction with Cu2+ of ice templated composite hydrogels. Res J Chem Environ 17:4–10 Dragan ES, Dinu MV (2013) Design, synthesis and interaction with Cu2+ of ice templated composite hydrogels. Res J Chem Environ 17:4–10
Zurück zum Zitat Dragan ES, Dinu MV (2015a) Interpenetrating polymer network composite cryogels with tailored porous morphology and sorption properties. Methods Mol Biol 1286:239–252PubMedCrossRef Dragan ES, Dinu MV (2015a) Interpenetrating polymer network composite cryogels with tailored porous morphology and sorption properties. Methods Mol Biol 1286:239–252PubMedCrossRef
Zurück zum Zitat Dragan ES, Dinu MV (2015b) Progress in polysaccharide/zeolites and polysaccharide hydrogel composite sorbents and their applications in removal of heavy metal ions and dyes. Curr Green Chem 2:342–353CrossRef Dragan ES, Dinu MV (2015b) Progress in polysaccharide/zeolites and polysaccharide hydrogel composite sorbents and their applications in removal of heavy metal ions and dyes. Curr Green Chem 2:342–353CrossRef
Zurück zum Zitat Dragan ES, Cazacu M, Nistor A (2009) Ionic organic/inorganic materials. III. stimuli responsive hybrid hydrogels based on oligo(N, Ndimethylaminoethylmethacrylate) and chloroalkyl-functionalized siloxanes. J Polym Sci A Polym Chem 47:6801–6813CrossRef Dragan ES, Cazacu M, Nistor A (2009) Ionic organic/inorganic materials. III. stimuli responsive hybrid hydrogels based on oligo(N, Ndimethylaminoethylmethacrylate) and chloroalkyl-functionalized siloxanes. J Polym Sci A Polym Chem 47:6801–6813CrossRef
Zurück zum Zitat Dragan ES, Dinu MV, Apopei DF (2012a) Macroporous anionic interpenetrating polymer networks composite hydrogels and their interaction with methylene blue. Int J Chem 1:548–569 Dragan ES, Dinu MV, Apopei DF (2012a) Macroporous anionic interpenetrating polymer networks composite hydrogels and their interaction with methylene blue. Int J Chem 1:548–569
Zurück zum Zitat Dragan S, Lazar MM, Dinu MV, Doroftei F (2012b) Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem Eng J 204–206:198–209CrossRef Dragan S, Lazar MM, Dinu MV, Doroftei F (2012b) Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem Eng J 204–206:198–209CrossRef
Zurück zum Zitat Dragan S, Lazar MM, Dinu MV (2012c) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281CrossRef Dragan S, Lazar MM, Dinu MV (2012c) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281CrossRef
Zurück zum Zitat Dragan ES, Cocarta AI, Gierszewska M (2016) Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids Surf B: Biointerfaces 139:33–41PubMedCrossRef Dragan ES, Cocarta AI, Gierszewska M (2016) Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids Surf B: Biointerfaces 139:33–41PubMedCrossRef
Zurück zum Zitat Elviri L, Asadzadeh M, Cucinelli R, Bianchera A, Bettini R (2015) Macroporous chitosan hydrogels: effects of sulfur on the loading and release behaviour of amino acid-based compounds. Carbohydr Polym 132:50–58PubMedCrossRef Elviri L, Asadzadeh M, Cucinelli R, Bianchera A, Bettini R (2015) Macroporous chitosan hydrogels: effects of sulfur on the loading and release behaviour of amino acid-based compounds. Carbohydr Polym 132:50–58PubMedCrossRef
Zurück zum Zitat Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation. J Chromatogr A 1357:24–35PubMedCrossRef Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation. J Chromatogr A 1357:24–35PubMedCrossRef
Zurück zum Zitat Fathi A, Lee S, Zhong X, Hon N, Valtchev P, Dehghani F (2013) Fabrication of interpenetrating polymer network to enhance the biological activity of synthetic hydrogels. Polymer 54:5534–5542CrossRef Fathi A, Lee S, Zhong X, Hon N, Valtchev P, Dehghani F (2013) Fabrication of interpenetrating polymer network to enhance the biological activity of synthetic hydrogels. Polymer 54:5534–5542CrossRef
Zurück zum Zitat Fernandes M, Gonalves IC, Nardecchia S, Amaral IF, Barbosa MA, Martins MCL (2013) Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. Int J Pharm 454:116–124PubMedCrossRef Fernandes M, Gonalves IC, Nardecchia S, Amaral IF, Barbosa MA, Martins MCL (2013) Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. Int J Pharm 454:116–124PubMedCrossRef
Zurück zum Zitat Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2:439–449CrossRef Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2:439–449CrossRef
Zurück zum Zitat Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2:218–227PubMedCrossRef Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2:218–227PubMedCrossRef
Zurück zum Zitat Guarino V, Galizia M, Alvarez-Perez M, Mensitieri G, Ambrosio L (2015) Improving surface and transport properties of macroporous hydrogels for bone regeneration. J Biomed Mater Res, Part A 103A:1095–1105CrossRef Guarino V, Galizia M, Alvarez-Perez M, Mensitieri G, Ambrosio L (2015) Improving surface and transport properties of macroporous hydrogels for bone regeneration. J Biomed Mater Res, Part A 103A:1095–1105CrossRef
Zurück zum Zitat Gunko VM, Savina IN, Mikhalovsky SV (2013) Cryogels: morphological, structural and adsorption characterization. Adv Colloid Interf Sci 187–188:1–46CrossRef Gunko VM, Savina IN, Mikhalovsky SV (2013) Cryogels: morphological, structural and adsorption characterization. Adv Colloid Interf Sci 187–188:1–46CrossRef
Zurück zum Zitat Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20:634–648CrossRef Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20:634–648CrossRef
Zurück zum Zitat Gyarmati B, Mészár EZ, Kiss L, Deli MA, László K, Szilágyi A (2015) Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 22:32–38PubMedCrossRef Gyarmati B, Mészár EZ, Kiss L, Deli MA, László K, Szilágyi A (2015) Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 22:32–38PubMedCrossRef
Zurück zum Zitat He H, Averick S, Mandal P, Ding H, Li S, Gelb J, Kotwal N, Merkle A, Litster S, Matyjaszewski K (2015) Multifunctional hydrogels with reversible 3D ordered macroporous structures. Adv Sci 2:1500069–1500075CrossRef He H, Averick S, Mandal P, Ding H, Li S, Gelb J, Kotwal N, Merkle A, Litster S, Matyjaszewski K (2015) Multifunctional hydrogels with reversible 3D ordered macroporous structures. Adv Sci 2:1500069–1500075CrossRef
Zurück zum Zitat Henderson TM, Ladewig K, Haylock DN, McLean KM, O’Connor AJ (2013) Cryogels for biomedical applications. J Mater Chem B 1:2682–2695CrossRefPubMed Henderson TM, Ladewig K, Haylock DN, McLean KM, O’Connor AJ (2013) Cryogels for biomedical applications. J Mater Chem B 1:2682–2695CrossRefPubMed
Zurück zum Zitat Hsieh WC, Chang CP, Lin SM (2007) Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B: Biointerfaces 57:250–255PubMedCrossRef Hsieh WC, Chang CP, Lin SM (2007) Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B: Biointerfaces 57:250–255PubMedCrossRef
Zurück zum Zitat Hu XX, Shen H, Yang F, Bei JZ, Wang SG (2008) Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold. Biomaterials 29:3128–3136PubMedCrossRef Hu XX, Shen H, Yang F, Bei JZ, Wang SG (2008) Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold. Biomaterials 29:3128–3136PubMedCrossRef
Zurück zum Zitat Izadifar Z, Chen X, Kulyk W (2012) Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 3:799–838PubMedPubMedCentralCrossRef Izadifar Z, Chen X, Kulyk W (2012) Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 3:799–838PubMedPubMedCentralCrossRef
Zurück zum Zitat Jain E, Srivastava A, Kumar A (2009) Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. J Mater Sci Mater Med 20:S173–S179PubMedCrossRef Jain E, Srivastava A, Kumar A (2009) Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. J Mater Sci Mater Med 20:S173–S179PubMedCrossRef
Zurück zum Zitat Jain E, Damania A, Kumar Shakya A, Kumar A, Sarin SK, Kumar A (2015) Fabrication of macroporous cryogels as potential hepatocyte carriers for bioartificial liver support. Colloids Surf B: Biointerfaces 136:761–771PubMedCrossRef Jain E, Damania A, Kumar Shakya A, Kumar A, Sarin SK, Kumar A (2015) Fabrication of macroporous cryogels as potential hepatocyte carriers for bioartificial liver support. Colloids Surf B: Biointerfaces 136:761–771PubMedCrossRef
Zurück zum Zitat Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664PubMedCrossRef Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664PubMedCrossRef
Zurück zum Zitat Jiang Y, Wu Y, Huo Y (2015) Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. J Biomater Sci Polym Ed 26:917–930PubMedCrossRef Jiang Y, Wu Y, Huo Y (2015) Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. J Biomater Sci Polym Ed 26:917–930PubMedCrossRef
Zurück zum Zitat Karadağ E, Kundakcı S (2015) Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers Polym 16:2165–2176CrossRef Karadağ E, Kundakcı S (2015) Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers Polym 16:2165–2176CrossRef
Zurück zum Zitat Karpushkin E, Dusková-Smrcková M, Slouf M, Dusek K (2013) Rheology and porosity control of poly(2-hydroxyethyl methacrylate) hydrogels. Polymer 54:661–672CrossRef Karpushkin E, Dusková-Smrcková M, Slouf M, Dusek K (2013) Rheology and porosity control of poly(2-hydroxyethyl methacrylate) hydrogels. Polymer 54:661–672CrossRef
Zurück zum Zitat Kennedy S, Bencherif S, Norton D, Weinstock L, Mehta M, Mooney DJ (2014) Rapid and extensive collapse from electrically responsive macroporous hydrogels. Adv Healthc Mater 3:500–507PubMedCrossRef Kennedy S, Bencherif S, Norton D, Weinstock L, Mehta M, Mooney DJ (2014) Rapid and extensive collapse from electrically responsive macroporous hydrogels. Adv Healthc Mater 3:500–507PubMedCrossRef
Zurück zum Zitat Khoshakhlagh P, Moore MJ (2015) Photoreactive interpenetrating network of hyaluronic acid and Puramatrix as a selectively tunable scaffold for neurite growth. Acta Biomater 16:23–34PubMedCrossRef Khoshakhlagh P, Moore MJ (2015) Photoreactive interpenetrating network of hyaluronic acid and Puramatrix as a selectively tunable scaffold for neurite growth. Acta Biomater 16:23–34PubMedCrossRef
Zurück zum Zitat Kim TG, Chung HJ, Park TG (2008) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4:1611–1619PubMedCrossRef Kim TG, Chung HJ, Park TG (2008) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4:1611–1619PubMedCrossRef
Zurück zum Zitat Kim JW, Taki K, Nagamine S, Ohshima M (2009) Preparation of porous poly(l-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing. Langmuir 25:5304–5312PubMedCrossRef Kim JW, Taki K, Nagamine S, Ohshima M (2009) Preparation of porous poly(l-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing. Langmuir 25:5304–5312PubMedCrossRef
Zurück zum Zitat Köhnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 100:24–30PubMedCrossRef Köhnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 100:24–30PubMedCrossRef
Zurück zum Zitat Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290CrossRef Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290CrossRef
Zurück zum Zitat Kumar P, Ganure AL, Subudhi BB, Shukla S (2015) Preparation and characterization of pH-sensitive methylmethacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium. Drug Delivery Transl Res 5:243–256CrossRef Kumar P, Ganure AL, Subudhi BB, Shukla S (2015) Preparation and characterization of pH-sensitive methylmethacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium. Drug Delivery Transl Res 5:243–256CrossRef
Zurück zum Zitat Kuo Y-C, Wang C-C (2013) Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate–chitosan–gelatin hydrogels with surface neuron growth factor. Colloids Surf B: Biointerfaces 104:194–199PubMedCrossRef Kuo Y-C, Wang C-C (2013) Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate–chitosan–gelatin hydrogels with surface neuron growth factor. Colloids Surf B: Biointerfaces 104:194–199PubMedCrossRef
Zurück zum Zitat Lamprou A, Gavriilidoua A-F-M, Storti G, Soosa M, Morbidelli M (2015) Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals. J Chromatogr A 1407:90–99PubMedCrossRef Lamprou A, Gavriilidoua A-F-M, Storti G, Soosa M, Morbidelli M (2015) Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals. J Chromatogr A 1407:90–99PubMedCrossRef
Zurück zum Zitat Lau HK, Kiick KL (2015) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28–42PubMedCrossRef Lau HK, Kiick KL (2015) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28–42PubMedCrossRef
Zurück zum Zitat Lazaridou A, Kritikopoulou K, Biliaderis CG (2015) Barley β-glucan cryogels as encapsulation carriers of proteins: impact of molecular size on thermo-mechanical and release properties. Bioact Carbohydr Dietary Fibre 6:99–108CrossRef Lazaridou A, Kritikopoulou K, Biliaderis CG (2015) Barley β-glucan cryogels as encapsulation carriers of proteins: impact of molecular size on thermo-mechanical and release properties. Bioact Carbohydr Dietary Fibre 6:99–108CrossRef
Zurück zum Zitat Lee Y, Park S, Han SW, Lim TG, Koh W-G (2012) Preparation of photolithographically patterned inverse opal hydrogel microstructures and its application to protein patterning. Biosens Bioelectron 35:243–250PubMedCrossRef Lee Y, Park S, Han SW, Lim TG, Koh W-G (2012) Preparation of photolithographically patterned inverse opal hydrogel microstructures and its application to protein patterning. Biosens Bioelectron 35:243–250PubMedCrossRef
Zurück zum Zitat Lesny P, Prádny M, Jendelová P, Michálek J, Vacík J, Syková E (2006) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4. growth of rat bone arrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. J Mater Sci Mater Med 17:829–833PubMedCrossRef Lesny P, Prádny M, Jendelová P, Michálek J, Vacík J, Syková E (2006) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4. growth of rat bone arrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. J Mater Sci Mater Med 17:829–833PubMedCrossRef
Zurück zum Zitat Li Y, Guo H, Gan J, Zheng J, Zhang Y, Wu K, Lu M (2015a) Novel fast thermal-responsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. J Polym Res 22:78–91CrossRef Li Y, Guo H, Gan J, Zheng J, Zhang Y, Wu K, Lu M (2015a) Novel fast thermal-responsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. J Polym Res 22:78–91CrossRef
Zurück zum Zitat Li Z-X, Lu M-G, Wu K, Zhang Y-F, Miao L, Li Y-W, Guo H-L, Zheng J (2015b) Temperature-responsiveness and sustained delivery properties of macroporous PEG-co-PNIPAAm-co-PCL hydrogels. Polym Eng Sci 55:223–230CrossRef Li Z-X, Lu M-G, Wu K, Zhang Y-F, Miao L, Li Y-W, Guo H-L, Zheng J (2015b) Temperature-responsiveness and sustained delivery properties of macroporous PEG-co-PNIPAAm-co-PCL hydrogels. Polym Eng Sci 55:223–230CrossRef
Zurück zum Zitat Lips PAM, Velthoen IW, Dijkstra PJ, Wessling M, Feijen J (2005) Gas foaming of segmented poly(ester amide) films. Polymer 46:9396–9403CrossRef Lips PAM, Velthoen IW, Dijkstra PJ, Wessling M, Feijen J (2005) Gas foaming of segmented poly(ester amide) films. Polymer 46:9396–9403CrossRef
Zurück zum Zitat Liu Y, Cui Y (2011) Preparation and properties of temperature-sensitive soy protein/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Polym Int 60:1117–1122CrossRef Liu Y, Cui Y (2011) Preparation and properties of temperature-sensitive soy protein/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Polym Int 60:1117–1122CrossRef
Zurück zum Zitat Liu L, Xie JP, Li YJ, Zhang Q, Yao JM (2016) Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution. Cellulose 23:723–736CrossRef Liu L, Xie JP, Li YJ, Zhang Q, Yao JM (2016) Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution. Cellulose 23:723–736CrossRef
Zurück zum Zitat Lozinsky VI (2014) A brief history of polymeric cryogels. In: Okay O (ed) Advances in polymer science. Springer International Publishing, New York, pp 1–48 Lozinsky VI (2014) A brief history of polymeric cryogels. In: Okay O (ed) Advances in polymer science. Springer International Publishing, New York, pp 1–48
Zurück zum Zitat Mastropietro DJ, Omidian H, Park K (2012) Drug delivery applications for superporous hydrogels. Expert Opin Drug Deliv 9:71–89PubMedCrossRef Mastropietro DJ, Omidian H, Park K (2012) Drug delivery applications for superporous hydrogels. Expert Opin Drug Deliv 9:71–89PubMedCrossRef
Zurück zum Zitat Nakagawa K, Sowasod N, Tanthapanichakoon W, Charinpanitkul T (2013) Hydrogel based oil encapsulation for controlled release of curcumin by using a ternary system of chitosan, kappa-carrageenan, and carboxymethylcellulose sodium salt. Food Sci Technol 54:600–605 Nakagawa K, Sowasod N, Tanthapanichakoon W, Charinpanitkul T (2013) Hydrogel based oil encapsulation for controlled release of curcumin by using a ternary system of chitosan, kappa-carrageenan, and carboxymethylcellulose sodium salt. Food Sci Technol 54:600–605
Zurück zum Zitat Nasim Annabi MS, Nichol JW, Zhong X, Ji C, Sandeep Koshy MBE, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng B 16:371–383CrossRef Nasim Annabi MS, Nichol JW, Zhong X, Ji C, Sandeep Koshy MBE, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng B 16:371–383CrossRef
Zurück zum Zitat Nieto-Suárez M, López-Quintel MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183PubMedCrossRef Nieto-Suárez M, López-Quintel MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183PubMedCrossRef
Zurück zum Zitat Oh BHL, Bismarck Alexander, Chan-Park Mary B (2015) Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol Rapid Commun 36:364–372PubMedCrossRef Oh BHL, Bismarck Alexander, Chan-Park Mary B (2015) Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol Rapid Commun 36:364–372PubMedCrossRef
Zurück zum Zitat Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779CrossRef Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779CrossRef
Zurück zum Zitat Orakdogen N, Karacan P, Okay O (2011) Macroporous, responsive DNA cryogel beads. React Funct Polym 71:782–790CrossRef Orakdogen N, Karacan P, Okay O (2011) Macroporous, responsive DNA cryogel beads. React Funct Polym 71:782–790CrossRef
Zurück zum Zitat Owen SC, Fisher SA, Tam RY, Nimmo CM, Shoichet MS (2013) Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir 29:7393–7400PubMedCrossRef Owen SC, Fisher SA, Tam RY, Nimmo CM, Shoichet MS (2013) Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir 29:7393–7400PubMedCrossRef
Zurück zum Zitat Ozmen MM, Dinu MV, Dragan ES, Okay O (2007) Preparation of macroporous acrylamide-based hydrogels: cryogelation under isothermal conditions. J Macromol Sci Part A Pure Appl Chem 44:1195–1202CrossRef Ozmen MM, Dinu MV, Dragan ES, Okay O (2007) Preparation of macroporous acrylamide-based hydrogels: cryogelation under isothermal conditions. J Macromol Sci Part A Pure Appl Chem 44:1195–1202CrossRef
Zurück zum Zitat Oztoprak Z, Hekimoglu T, Karakutuk I, Tuncaboylu DC, Okay O (2014) Porous rubber cryogels: effect of the gel preparation temperature. Polym Bull 71:1983–1999CrossRef Oztoprak Z, Hekimoglu T, Karakutuk I, Tuncaboylu DC, Okay O (2014) Porous rubber cryogels: effect of the gel preparation temperature. Polym Bull 71:1983–1999CrossRef
Zurück zum Zitat Park H, Kim D (2006) Swelling and mechanical properties of glycol chitosan/poly(vinyl alcohol) IPN-type superporous hydrogels. J Biomed Mater Res 78A:662–667CrossRef Park H, Kim D (2006) Swelling and mechanical properties of glycol chitosan/poly(vinyl alcohol) IPN-type superporous hydrogels. J Biomed Mater Res 78A:662–667CrossRef
Zurück zum Zitat Perju MM, Dinu MV, Dragan ES (2012) Sorption of methylene blue onto ionic composite hydrogels based on polyacrylamide and dextran sulfate: kinetics, isotherms, and thermodynamics. Sep Sci Technol 47:1322–1333CrossRef Perju MM, Dinu MV, Dragan ES (2012) Sorption of methylene blue onto ionic composite hydrogels based on polyacrylamide and dextran sulfate: kinetics, isotherms, and thermodynamics. Sep Sci Technol 47:1322–1333CrossRef
Zurück zum Zitat Phull MK, Eydmann T, Roxburgh J, Sharpe JR, Lawrence-Watt DJ, Phillips G, Martin Y (2013) Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells. J Mater Sci Mater Med 24:461–467PubMedCrossRef Phull MK, Eydmann T, Roxburgh J, Sharpe JR, Lawrence-Watt DJ, Phillips G, Martin Y (2013) Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells. J Mater Sci Mater Med 24:461–467PubMedCrossRef
Zurück zum Zitat Přádný M, Šlouf M, Martinová L, Michálek J (2010) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 7: methods of preparation and comparison of resulting physical properties. e-Polymers 043:1–12 Přádný M, Šlouf M, Martinová L, Michálek J (2010) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 7: methods of preparation and comparison of resulting physical properties. e-Polymers 043:1–12
Zurück zum Zitat Přádný M, Dušková-Smrčková M, Dušek K, Janoušková O, Sadakbayeva Z, Šlouf M, Michálek J (2014) Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior. J Polym Res 21:567–579CrossRef Přádný M, Dušková-Smrčková M, Dušek K, Janoušková O, Sadakbayeva Z, Šlouf M, Michálek J (2014) Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior. J Polym Res 21:567–579CrossRef
Zurück zum Zitat Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 118:60–69PubMedCrossRef Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 118:60–69PubMedCrossRef
Zurück zum Zitat Reneker DH, Chun I (1996) Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRef Reneker DH, Chun I (1996) Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRef
Zurück zum Zitat Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Laupretre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze-thaw techniques. Macromolecules 38:6629–6639CrossRef Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Laupretre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze-thaw techniques. Macromolecules 38:6629–6639CrossRef
Zurück zum Zitat Rivero RE, Alustiza F, Rodríguez N, Bosch P, Miras MC, Rivarola CR, Barbero CA (2015) Effect of functional groups on physicochemical and mechanical behavior of biocompatible macroporous hydrogels. React Funct Polym 97:77–85CrossRef Rivero RE, Alustiza F, Rodríguez N, Bosch P, Miras MC, Rivarola CR, Barbero CA (2015) Effect of functional groups on physicochemical and mechanical behavior of biocompatible macroporous hydrogels. React Funct Polym 97:77–85CrossRef
Zurück zum Zitat Rogina A (2014) Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci 296:221–230CrossRef Rogina A (2014) Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci 296:221–230CrossRef
Zurück zum Zitat Sahiner N, Demirci S, Sahiner M, Yilmaz S, Al-Lohedan H (2015) The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. J Environ Manag 152:66–74CrossRef Sahiner N, Demirci S, Sahiner M, Yilmaz S, Al-Lohedan H (2015) The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. J Environ Manag 152:66–74CrossRef
Zurück zum Zitat Salerno A, Borzacchiello R, Netti PA (2011) Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverse-casting technique. J Appl Polym Sci 122:3651–3660CrossRef Salerno A, Borzacchiello R, Netti PA (2011) Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverse-casting technique. J Appl Polym Sci 122:3651–3660CrossRef
Zurück zum Zitat Sato R, Noma R, Tokuyama H (2015) Preparation of macroporous poly(N-isopropylacrylamide) hydrogels using a suspension–gelation method. Eur Polym J 66:91–97CrossRef Sato R, Noma R, Tokuyama H (2015) Preparation of macroporous poly(N-isopropylacrylamide) hydrogels using a suspension–gelation method. Eur Polym J 66:91–97CrossRef
Zurück zum Zitat Savina IN, Ingavle GC, Cundy AB, Mikhalovsky SV (2016) A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Sci Rep 6:21154–21162PubMedPubMedCentralCrossRef Savina IN, Ingavle GC, Cundy AB, Mikhalovsky SV (2016) A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Sci Rep 6:21154–21162PubMedPubMedCentralCrossRef
Zurück zum Zitat Sedlačík T, Proks V, Šlouf M, Dušková-Smrčková M, Ha Studenovská, Rypáček F (2015) Macroporous biodegradable cryogels of synthetic poly(α-amino acids). Biomacromolecules 16:3455–3465PubMedCrossRef Sedlačík T, Proks V, Šlouf M, Dušková-Smrčková M, Ha Studenovská, Rypáček F (2015) Macroporous biodegradable cryogels of synthetic poly(α-amino acids). Biomacromolecules 16:3455–3465PubMedCrossRef
Zurück zum Zitat Shen X, Shamshina JL, Berton P, Gurauc G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRef Shen X, Shamshina JL, Berton P, Gurauc G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRef
Zurück zum Zitat Sokic S, Christenson M, Larson J, Papavasiliou G (2014) In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol Biosci 14:731–739PubMedCrossRef Sokic S, Christenson M, Larson J, Papavasiliou G (2014) In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol Biosci 14:731–739PubMedCrossRef
Zurück zum Zitat Sood N, Bhardwaj A, Mehta S, Mehta A (2016) Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 23:748–770 Sood N, Bhardwaj A, Mehta S, Mehta A (2016) Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 23:748–770
Zurück zum Zitat Strom A, Larsson A, Okay O (2015) Preparation and physical properties of hyaluronic acid-based cryogels. J Appl Polym Sci 132:42194–42204CrossRef Strom A, Larsson A, Okay O (2015) Preparation and physical properties of hyaluronic acid-based cryogels. J Appl Polym Sci 132:42194–42204CrossRef
Zurück zum Zitat Studenovska H, Slouf M, Rypacek F (2008) Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications. J Mater Sci Mater Med 19:615–621PubMedCrossRef Studenovska H, Slouf M, Rypacek F (2008) Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications. J Mater Sci Mater Med 19:615–621PubMedCrossRef
Zurück zum Zitat Su Y, Zhao Q, Sun J, Wu J (2012) Synthesis and characterization of biodegradable macroporous cryogels crosslinked by chitosan oligosaccharide-graft-acrylic acid. Soft Matter 8:4382–4389CrossRef Su Y, Zhao Q, Sun J, Wu J (2012) Synthesis and characterization of biodegradable macroporous cryogels crosslinked by chitosan oligosaccharide-graft-acrylic acid. Soft Matter 8:4382–4389CrossRef
Zurück zum Zitat Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M (2015) Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 5:53963–53972CrossRef Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M (2015) Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 5:53963–53972CrossRef
Zurück zum Zitat Sun X-F, Jing Z, Wang H, Liu Y (2015a) Physical–chemical properties of xylan/PAAc magnetic semi-interpenetrating network hydrogel. Polym Compos 36:2317–2325CrossRef Sun X-F, Jing Z, Wang H, Liu Y (2015a) Physical–chemical properties of xylan/PAAc magnetic semi-interpenetrating network hydrogel. Polym Compos 36:2317–2325CrossRef
Zurück zum Zitat Sun X-F, Liu B, Jing Z, Wang H (2015b) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23PubMedCrossRef Sun X-F, Liu B, Jing Z, Wang H (2015b) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23PubMedCrossRef
Zurück zum Zitat Tavsanli B, Can V, Okay O (2015) Mechanically strong triple network hydrogels based on hyaluronan and poly(N, N-dimethylacrylamide). Soft Matter 11:8517–8524PubMedCrossRef Tavsanli B, Can V, Okay O (2015) Mechanically strong triple network hydrogels based on hyaluronan and poly(N, N-dimethylacrylamide). Soft Matter 11:8517–8524PubMedCrossRef
Zurück zum Zitat Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRef Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRef
Zurück zum Zitat Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRef Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRef
Zurück zum Zitat Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRef Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRef
Zurück zum Zitat Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197PubMedCrossRef Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197PubMedCrossRef
Zurück zum Zitat Topuz F, Okay O (2009) Macroporous hydrogel beads of high toughness and superfast responsivity. React Funct Polym 69:273–280CrossRef Topuz F, Okay O (2009) Macroporous hydrogel beads of high toughness and superfast responsivity. React Funct Polym 69:273–280CrossRef
Zurück zum Zitat Tripathi A, Kumar A (2011) Multi-featured macroporous agarose–alginate cryogel: synthesis and characterization for bioengineering applications. Macromol Biosci 11:22–35PubMedCrossRef Tripathi A, Kumar A (2011) Multi-featured macroporous agarose–alginate cryogel: synthesis and characterization for bioengineering applications. Macromol Biosci 11:22–35PubMedCrossRef
Zurück zum Zitat Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose–gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res 90A:680–694CrossRef Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose–gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res 90A:680–694CrossRef
Zurück zum Zitat Tripathi A, Vishnoi T, Singh D, Kumar A (2013) Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth. Macromol Biosci 13:838–850PubMedCrossRef Tripathi A, Vishnoi T, Singh D, Kumar A (2013) Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth. Macromol Biosci 13:838–850PubMedCrossRef
Zurück zum Zitat Truong VX, Barker IA, Tan M, Mespouille L, Dubois P, Dove AP (2013) Preparation of in situ-forming poly(5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one)-poly(ethylene glycol) hydrogels with tuneable swelling, mechanical strength and degradability. J Mater Chem B 1:221–229CrossRefPubMed Truong VX, Barker IA, Tan M, Mespouille L, Dubois P, Dove AP (2013) Preparation of in situ-forming poly(5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one)-poly(ethylene glycol) hydrogels with tuneable swelling, mechanical strength and degradability. J Mater Chem B 1:221–229CrossRefPubMed
Zurück zum Zitat Varaprasad K, Narayana Reddy N, Ravindra S, Vimala K, Mohana Raju K (2011) Synthesis and characterizations of macroporous poly(acrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels for in vitro drug release of ranitidine hydrochloride. Int J Polym Mater Polym Biomater 60:490–503CrossRef Varaprasad K, Narayana Reddy N, Ravindra S, Vimala K, Mohana Raju K (2011) Synthesis and characterizations of macroporous poly(acrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels for in vitro drug release of ranitidine hydrochloride. Int J Polym Mater Polym Biomater 60:490–503CrossRef
Zurück zum Zitat Vishal Gupta N, Shivakumar HG (2010) Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. DARU 18:200–210PubMedPubMedCentral Vishal Gupta N, Shivakumar HG (2010) Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. DARU 18:200–210PubMedPubMedCentral
Zurück zum Zitat Visser J, Melchels FPW, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, Dhert WJA, Dalton PD, Hutmacher DW, Malda J (2015) Reinforcement of hydrogels using three-dimensionally printed microfibers. Nature Commun 6:6933–6943CrossRef Visser J, Melchels FPW, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, Dhert WJA, Dalton PD, Hutmacher DW, Malda J (2015) Reinforcement of hydrogels using three-dimensionally printed microfibers. Nature Commun 6:6933–6943CrossRef
Zurück zum Zitat Wang J, Li Z (2015) Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: behaviors and mechanisms. J Hazard Mater 300:18–28PubMedCrossRef Wang J, Li Z (2015) Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: behaviors and mechanisms. J Hazard Mater 300:18–28PubMedCrossRef
Zurück zum Zitat Wei W, Qi X, Liu Y, Li J, Hu X, Zuo G, Zhang J, Dong W (2015) Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N, N-diethylacrylamide-co-methacrylic acid). Colloids Surf B: Biointerfaces 136:1182–1192PubMedCrossRef Wei W, Qi X, Liu Y, Li J, Hu X, Zuo G, Zhang J, Dong W (2015) Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N, N-diethylacrylamide-co-methacrylic acid). Colloids Surf B: Biointerfaces 136:1182–1192PubMedCrossRef
Zurück zum Zitat Welzel PB, Grimmer M, Renneberg C, Naujox L, Zschoche S, Freudenberg U, Werner C (2012) Macroporous starPEG-heparin cryogels. Biomacromolecules 13:2349–2358PubMedCrossRef Welzel PB, Grimmer M, Renneberg C, Naujox L, Zschoche S, Freudenberg U, Werner C (2012) Macroporous starPEG-heparin cryogels. Biomacromolecules 13:2349–2358PubMedCrossRef
Zurück zum Zitat Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 6:1167–1177PubMedCrossRef Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 6:1167–1177PubMedCrossRef
Zurück zum Zitat Wu J, Zhao Q, Sun J, Zhou Q (2012) Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 8:3620–3626CrossRef Wu J, Zhao Q, Sun J, Zhou Q (2012) Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 8:3620–3626CrossRef
Zurück zum Zitat Wu Y, Chen YX, Yan J, Yang S, Dong P, Soman P (2015) Fabrication of conductive polyaniline hydrogel using porogen leaching and projection microstereolithography. J Mater Chem B 3:5352–5360CrossRefPubMed Wu Y, Chen YX, Yan J, Yang S, Dong P, Soman P (2015) Fabrication of conductive polyaniline hydrogel using porogen leaching and projection microstereolithography. J Mater Chem B 3:5352–5360CrossRefPubMed
Zurück zum Zitat Xu S, Deng L, Zhang J, Yin L, Dong A (2016) Composites of electrospun-fibers and hydrogels: a potential solution to current challenges in biological and biomedical field. J Biomed Mater Res Part B: Appl Biomater 104B:640–656CrossRef Xu S, Deng L, Zhang J, Yin L, Dong A (2016) Composites of electrospun-fibers and hydrogels: a potential solution to current challenges in biological and biomedical field. J Biomed Mater Res Part B: Appl Biomater 104B:640–656CrossRef
Zurück zum Zitat Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, Nishimura S, Minami A (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res Part A 81A:586–593CrossRef Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, Nishimura S, Minami A (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res Part A 81A:586–593CrossRef
Zurück zum Zitat Yi W, Wu H, Wang H, Du Q (2016) Interconnectivity of macroporous hydrogels prepared via grapheme oxide-stabilized Pickering high internal phase emulsions. Langmuir 32:982–990PubMedCrossRef Yi W, Wu H, Wang H, Du Q (2016) Interconnectivity of macroporous hydrogels prepared via grapheme oxide-stabilized Pickering high internal phase emulsions. Langmuir 32:982–990PubMedCrossRef
Zurück zum Zitat Yue Z, Wen F, Gao S, Ang MY, Pallathadka PK, Liu L, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31:8141–8152PubMedCrossRef Yue Z, Wen F, Gao S, Ang MY, Pallathadka PK, Liu L, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31:8141–8152PubMedCrossRef
Zurück zum Zitat Zhang X, Cao C, Ma X, Li Y (2012) Optimization of macroporous 3-D silk fibroin scaffolds by salt-leaching procedure in organic solvent-free conditions. J Mater Sci Mater Med 23:315–324PubMedCrossRef Zhang X, Cao C, Ma X, Li Y (2012) Optimization of macroporous 3-D silk fibroin scaffolds by salt-leaching procedure in organic solvent-free conditions. J Mater Sci Mater Med 23:315–324PubMedCrossRef
Zurück zum Zitat Zhang Y, Yana W, Sun Z, Pan C, Mi X, Zhao G, Gao J (2015) Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption. Carbohydr Polym 117:657–665PubMedCrossRef Zhang Y, Yana W, Sun Z, Pan C, Mi X, Zhao G, Gao J (2015) Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption. Carbohydr Polym 117:657–665PubMedCrossRef
Zurück zum Zitat Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191CrossRef Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191CrossRef
Zurück zum Zitat Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130PubMedPubMedCentralCrossRef Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhong X, Ji C, Chan AKL, Kazarian SG, Ruys A, Dehghani F (2011) Fabrication of chitosan/poly(e-caprolactone) composite hydrogels for tissue engineering applications. J Mater Sci Mater Med 22:279–288PubMedCrossRef Zhong X, Ji C, Chan AKL, Kazarian SG, Ruys A, Dehghani F (2011) Fabrication of chitosan/poly(e-caprolactone) composite hydrogels for tissue engineering applications. J Mater Sci Mater Med 22:279–288PubMedCrossRef
Zurück zum Zitat Zhu Q, Li Z (2015) Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem Eng J 281:69–80CrossRef Zhu Q, Li Z (2015) Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem Eng J 281:69–80CrossRef
Zurück zum Zitat Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Dev 8:607–626CrossRef Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Dev 8:607–626CrossRef
Zurück zum Zitat Zhu W, Song H, Du K, Zeng H, Yao S (2013) Rapid removal of Cr(VI) ions from aqueous solutions by the macroporous poly(N, N-dimethylamino ethyl methacrylate) hydrogels. J Appl Polym Sci 128:2729–2735CrossRef Zhu W, Song H, Du K, Zeng H, Yao S (2013) Rapid removal of Cr(VI) ions from aqueous solutions by the macroporous poly(N, N-dimethylamino ethyl methacrylate) hydrogels. J Appl Polym Sci 128:2729–2735CrossRef
Metadaten
Titel
Macroporous Hydrogels: Preparation, Properties, and Applications
verfasst von
Maria Valentina Dinu
Ecaterina Stela Dragan
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6077-9_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.