Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2024

01.04.2024 | Research

Magnetic dextran-spermine nanoparticles as pH-sensitive carriers for antibiotic delivery

verfasst von: Neda Abri, Ebrahim Vasheghani-Farahani, Hossein Shaki, Fariba Ganji, Samira Jafarzadeh-Holahg

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent decades, extensive research has been conducted on nano drug delivery systems for treating inflammation. Despite this, the lack of specificity in many carriers and materials has hindered their effectiveness in enhancing treatment efficiency. To address this challenge, among numerous candidate biomaterials, stimuli-responsive biopolymers have received significant interest for precisely delivering their payload to inflamed tissues. Herein, to overcome this deficiency, pH-responsive magnetic nanocarriers were fabricated. A cationic dextran was synthesized based on the oxidation of glucose ring and conjugation of spermine. Drug-loaded magnetic dextran-spermine nanoparticles (DS-NPs) were prepared by in situ drug loading via ionic gelation. Fabricated nanoparticles have smaller size (60–100 nm), with relatively narrow size distribution (pdI = 0.175–0.251), and a positive surface charge (+ 17.1 to + 29.0 mV). The in vitro release study in simulated normal and inflamed organ environments confirmed the pH sensitivity of the drug release with a slight burst effect in normal conditions and accelerated release in acidic pH (final release < 70% and < 50% of the total encapsulated drug for pH 7.4 and pH 5.0, respectively). Antibacterial study on Staphylococcus aureus showed no changes in the bactericidal activity of encapsulated vancomycin. Cytotoxicity studies on HUVEC cells confirmed that drug-free nanoparticles exhibited no toxicity, even up to 1 mg/mL. Furthermore, the cytotoxicity of encapsulated vancomycin against HUVEC cells was lower than that of free vancomycin in all incubation times (24 h, 48 h, 72 h).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Craparo EF et al (2011) Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS neurosci Ther 17(6):670–677PubMedCrossRef Craparo EF et al (2011) Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS neurosci Ther 17(6):670–677PubMedCrossRef
3.
Zurück zum Zitat Ghaeini-Hesaroeiye S, Boddohi S, Vasheghani-Farahani E (2020) Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. Int J Bio Macromol 143:297–304CrossRef Ghaeini-Hesaroeiye S, Boddohi S, Vasheghani-Farahani E (2020) Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. Int J Bio Macromol 143:297–304CrossRef
4.
Zurück zum Zitat Nasrollahzadeh M et al (2022) Drug in adhesive transdermal patch containing antibiotic-loaded solid lipid nanoparticles. J Biosci Bioeng 134(5):471–476PubMedCrossRef Nasrollahzadeh M et al (2022) Drug in adhesive transdermal patch containing antibiotic-loaded solid lipid nanoparticles. J Biosci Bioeng 134(5):471–476PubMedCrossRef
5.
6.
Zurück zum Zitat Xu H et al (2015) Amphiphilic poly (amino acid) based micelles applied to drug delivery: the in vitro and in vivo challenges and the corresponding potential strategies. J Control Release 199:84–97PubMedCrossRef Xu H et al (2015) Amphiphilic poly (amino acid) based micelles applied to drug delivery: the in vitro and in vivo challenges and the corresponding potential strategies. J Control Release 199:84–97PubMedCrossRef
7.
Zurück zum Zitat Shaki H et al (2018) Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. J Drug Deliv Sci Technol 44:333–341CrossRef Shaki H et al (2018) Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. J Drug Deliv Sci Technol 44:333–341CrossRef
8.
Zurück zum Zitat Jafarzadeh-Holagh S et al (2018) Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Inter Sci 523:179–190CrossRef Jafarzadeh-Holagh S et al (2018) Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Inter Sci 523:179–190CrossRef
9.
Zurück zum Zitat Wang Y, Wang PG (2013) Polysaccharide-based systems in drug and gene delivery. Adv Drug Deliv Rev 65(9):1121–1122CrossRef Wang Y, Wang PG (2013) Polysaccharide-based systems in drug and gene delivery. Adv Drug Deliv Rev 65(9):1121–1122CrossRef
10.
Zurück zum Zitat Prasher P et al (2022) Advances and applications of dextran-based nanomaterials targeting inflammatory respiratory diseases. J Drug Deliv Sci Tech 74:103598CrossRef Prasher P et al (2022) Advances and applications of dextran-based nanomaterials targeting inflammatory respiratory diseases. J Drug Deliv Sci Tech 74:103598CrossRef
11.
Zurück zum Zitat Yang J et al (2012) The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomater 33(2):604–613CrossRef Yang J et al (2012) The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomater 33(2):604–613CrossRef
12.
Zurück zum Zitat Yao X et al (2014) Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery. Colloids Surf B: Biointerfaces 121:36–43PubMedCrossRef Yao X et al (2014) Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery. Colloids Surf B: Biointerfaces 121:36–43PubMedCrossRef
13.
Zurück zum Zitat Tiryaki E et al (2020) Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: dextran and dextran aldehyde coated silica aerogels. J Drug Deliv Sci Tech 56:101517CrossRef Tiryaki E et al (2020) Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: dextran and dextran aldehyde coated silica aerogels. J Drug Deliv Sci Tech 56:101517CrossRef
14.
Zurück zum Zitat Abeylath SC, Amiji MM (2011) ‘Click’synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg Med Chem 19(21):6167–6173PubMedPubMedCentralCrossRef Abeylath SC, Amiji MM (2011) ‘Click’synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg Med Chem 19(21):6167–6173PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Thomas JJ, Rekha M, Sharma CP (2010) Dextran–glycidyltrimethylammonium chloride conjugate/DNA nanoplex: a potential non-viral and haemocompatible gene delivery system. Int J Pharm 389(1–2):195–206PubMedCrossRef Thomas JJ, Rekha M, Sharma CP (2010) Dextran–glycidyltrimethylammonium chloride conjugate/DNA nanoplex: a potential non-viral and haemocompatible gene delivery system. Int J Pharm 389(1–2):195–206PubMedCrossRef
16.
Zurück zum Zitat Shaki H et al (2021) A self assembled dextran-stearic acid-spermine nanocarrier for delivery of rapamycin as a hydrophobic drug. J Drug Deliv Sci Tech 66:102768CrossRef Shaki H et al (2021) A self assembled dextran-stearic acid-spermine nanocarrier for delivery of rapamycin as a hydrophobic drug. J Drug Deliv Sci Tech 66:102768CrossRef
17.
Zurück zum Zitat Tarvirdipour S et al (2016) Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm 501(1–2):331–341PubMedCrossRef Tarvirdipour S et al (2016) Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm 501(1–2):331–341PubMedCrossRef
18.
Zurück zum Zitat Ghadiri M et al (2017) Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res Part A 105(10):2851–2864CrossRef Ghadiri M et al (2017) Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res Part A 105(10):2851–2864CrossRef
19.
Zurück zum Zitat Du Y-Z et al (2010) Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 4(11):6894–6902PubMedCrossRef Du Y-Z et al (2010) Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 4(11):6894–6902PubMedCrossRef
20.
Zurück zum Zitat Mohammad-Taheri M, Vasheghani-Farahani E, Hosseinkhani H, Shojaosadati SA, Soleimani M (2012) Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iranian Polym J 21(4):239–251CrossRef Mohammad-Taheri M, Vasheghani-Farahani E, Hosseinkhani H, Shojaosadati SA, Soleimani M (2012) Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iranian Polym J 21(4):239–251CrossRef
21.
Zurück zum Zitat Ghadiri M et al (2017) Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res A 105(10):2851–2864PubMedCrossRef Ghadiri M et al (2017) Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res A 105(10):2851–2864PubMedCrossRef
22.
Zurück zum Zitat Jafarzadeh-Holagh S et al (2018) Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interface Sci 523:179–190PubMedCrossRef Jafarzadeh-Holagh S et al (2018) Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interface Sci 523:179–190PubMedCrossRef
23.
Zurück zum Zitat Lê MQ et al (2019) Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: comparison with cationic or anionic nanoparticles. Int J Pharm: X 1:100001PubMed Lê MQ et al (2019) Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: comparison with cationic or anionic nanoparticles. Int J Pharm: X 1:100001PubMed
24.
Zurück zum Zitat Wu X et al (2018) Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials 156:77–87PubMedCrossRef Wu X et al (2018) Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials 156:77–87PubMedCrossRef
25.
Zurück zum Zitat Ghadiri M et al (2017) In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells. Iranian J Pharm Res: IJPR 16(4):1320 Ghadiri M et al (2017) In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells. Iranian J Pharm Res: IJPR 16(4):1320
26.
Zurück zum Zitat Azzam T et al (2002) Cationic polysaccharides for gene delivery. Macromolecules 35(27):9947–9953CrossRef Azzam T et al (2002) Cationic polysaccharides for gene delivery. Macromolecules 35(27):9947–9953CrossRef
27.
Zurück zum Zitat Zhao T et al (2015) Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater Sci Eng C Mater Biol Appl 53:196–203PubMedCrossRef Zhao T et al (2015) Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater Sci Eng C Mater Biol Appl 53:196–203PubMedCrossRef
28.
Zurück zum Zitat Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv drug Deliv Rev 64:163–174CrossRef Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv drug Deliv Rev 64:163–174CrossRef
29.
Zurück zum Zitat Ramakrishna S et al (2012) Design and evaluation of drug release kinetics of meloxicam sustained release matrix tablets. Int J Curr Pharm Res 4(1):90–99 Ramakrishna S et al (2012) Design and evaluation of drug release kinetics of meloxicam sustained release matrix tablets. Int J Curr Pharm Res 4(1):90–99
30.
Zurück zum Zitat Mohammad-Taheri M et al (2012) Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iranian Polym J 21(4):239–251CrossRef Mohammad-Taheri M et al (2012) Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iranian Polym J 21(4):239–251CrossRef
31.
Zurück zum Zitat Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131PubMedCrossRef Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131PubMedCrossRef
32.
Zurück zum Zitat Gothwal A, Khan I, Gupta U (2016) Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res 33(1):18–39PubMedCrossRef Gothwal A, Khan I, Gupta U (2016) Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res 33(1):18–39PubMedCrossRef
33.
Zurück zum Zitat Raveendran R, Bhuvaneshwar GS, Sharma CP (2016) Hemocompatible curcumin–dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohyd Polym 137:497–507CrossRef Raveendran R, Bhuvaneshwar GS, Sharma CP (2016) Hemocompatible curcumin–dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohyd Polym 137:497–507CrossRef
34.
Zurück zum Zitat Kazemi-Ashtiyani M, Hajipour-Verdom B, Satari M, Abdolmaleki P, Hosseinkhani S, Shaki H (2022) Estimating the two graph dextran–stearic acid–spermine polymers based on iron oxide nanoparticles as carrier for gene delivery. Biopolymers 113(7):23491CrossRef Kazemi-Ashtiyani M, Hajipour-Verdom B, Satari M, Abdolmaleki P, Hosseinkhani S, Shaki H (2022) Estimating the two graph dextran–stearic acid–spermine polymers based on iron oxide nanoparticles as carrier for gene delivery. Biopolymers 113(7):23491CrossRef
35.
Zurück zum Zitat Danaei M et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57PubMedPubMedCentralCrossRef Danaei M et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Masarudin MJ et al (2015) Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [(14)C]-doxorubicin. Nanotechnol Sci Appl 8:67–80PubMedPubMedCentralCrossRef Masarudin MJ et al (2015) Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [(14)C]-doxorubicin. Nanotechnol Sci Appl 8:67–80PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Ternullo S et al (2018) Deformable liposomes for skin therapy with human epidermal growth factor: The effect of liposomal surface charge. Eur J Pharm Sci 125:163–171PubMedCrossRef Ternullo S et al (2018) Deformable liposomes for skin therapy with human epidermal growth factor: The effect of liposomal surface charge. Eur J Pharm Sci 125:163–171PubMedCrossRef
38.
Zurück zum Zitat Liu X, Zhou H, Yu W (2013) Effect of surface charge of amphiphlic chitosan nanocarriers on drug release behavior. J Control Release 172(1):e78CrossRef Liu X, Zhou H, Yu W (2013) Effect of surface charge of amphiphlic chitosan nanocarriers on drug release behavior. J Control Release 172(1):e78CrossRef
39.
Zurück zum Zitat Soheyla Honary FZ (2013) Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Tropical J Pharm Res 12(2):255–264 Soheyla Honary FZ (2013) Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Tropical J Pharm Res 12(2):255–264
40.
Zurück zum Zitat Pardeshi SR et al (2023) Novel crosslinked nanoparticles of chitosan oligosaccharide and dextran sulfate for ocular administration of dorzolamide against glaucoma. J Drug Deliv Sci Tech 86:104719CrossRef Pardeshi SR et al (2023) Novel crosslinked nanoparticles of chitosan oligosaccharide and dextran sulfate for ocular administration of dorzolamide against glaucoma. J Drug Deliv Sci Tech 86:104719CrossRef
42.
Zurück zum Zitat Ghadiri M et al (2017) In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells. Iran J Pharm Res 16(4):1320–1334PubMedPubMedCentral Ghadiri M et al (2017) In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells. Iran J Pharm Res 16(4):1320–1334PubMedPubMedCentral
43.
Zurück zum Zitat Rani NNIM et al (2022) Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant Staphylococcus aureus (MRSA). Asian J Pharm Sci 17(1):102–119PubMedCrossRef Rani NNIM et al (2022) Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant Staphylococcus aureus (MRSA). Asian J Pharm Sci 17(1):102–119PubMedCrossRef
44.
Zurück zum Zitat Avazzadeh R et al (2017) Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia. Prog Biomater 6:75–84PubMedPubMedCentralCrossRef Avazzadeh R et al (2017) Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia. Prog Biomater 6:75–84PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Xu J et al (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7(9):1850–1870CrossRef Xu J et al (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7(9):1850–1870CrossRef
46.
Zurück zum Zitat Mok H, Zhang M (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10(1):73–87PubMedCrossRef Mok H, Zhang M (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10(1):73–87PubMedCrossRef
47.
Zurück zum Zitat Eliyahu H et al (2006) Relationships between chemical composition, physical properties and transfection efficiency of polysaccharide-spermine conjugates. Biomaterials 27(8):1646–1655PubMedCrossRef Eliyahu H et al (2006) Relationships between chemical composition, physical properties and transfection efficiency of polysaccharide-spermine conjugates. Biomaterials 27(8):1646–1655PubMedCrossRef
48.
Zurück zum Zitat Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2):139–157PubMedCrossRef Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2):139–157PubMedCrossRef
49.
Zurück zum Zitat Tavakol M, Vasheghani-Farahani E, Hashemi-Najafabadi S (2013) The effect of polymer and CaCl 2 concentrations on the sulfasalazine release from alginate-N O-carboxymethyl chitosan beads. Prog in Biomater 2:1–8CrossRef Tavakol M, Vasheghani-Farahani E, Hashemi-Najafabadi S (2013) The effect of polymer and CaCl 2 concentrations on the sulfasalazine release from alginate-N O-carboxymethyl chitosan beads. Prog in Biomater 2:1–8CrossRef
50.
Zurück zum Zitat Vollmerhaus PJ, Breukink E, Heck AJ (2003) Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics. Chemistry 9(7):1556–1565PubMedCrossRef Vollmerhaus PJ, Breukink E, Heck AJ (2003) Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics. Chemistry 9(7):1556–1565PubMedCrossRef
51.
Zurück zum Zitat Zazo H, Colino CI, Lanao JM (2016) Current applications of nanoparticles in infectious diseases. J Control Release 224:86–102PubMedCrossRef Zazo H, Colino CI, Lanao JM (2016) Current applications of nanoparticles in infectious diseases. J Control Release 224:86–102PubMedCrossRef
53.
Zurück zum Zitat Baran A et al (2021) Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: anticancer and antimicrobial activities. Bioinorganic Chem App 2021:2058149 Baran A et al (2021) Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: anticancer and antimicrobial activities. Bioinorganic Chem App 2021:2058149
54.
Zurück zum Zitat Kiem S, Schentag JJ (2006) Relationship of minimal inhibitory concentration and bactericidal activity to efficacy of antibiotics for treatment of ventilator-associated pneumonia. Semin Respir Crit Care Med 27(1):51–67PubMedCrossRef Kiem S, Schentag JJ (2006) Relationship of minimal inhibitory concentration and bactericidal activity to efficacy of antibiotics for treatment of ventilator-associated pneumonia. Semin Respir Crit Care Med 27(1):51–67PubMedCrossRef
55.
Zurück zum Zitat Mouton JW, Vinks AA (2005) Relationship Between minimum inhibitory concentration and stationary concentration revisited. Clin Pharmacokinetics 44(7):767–768CrossRef Mouton JW, Vinks AA (2005) Relationship Between minimum inhibitory concentration and stationary concentration revisited. Clin Pharmacokinetics 44(7):767–768CrossRef
56.
Zurück zum Zitat Kalhapure RS et al (2015) Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104(3):872–905PubMedCrossRef Kalhapure RS et al (2015) Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104(3):872–905PubMedCrossRef
57.
Zurück zum Zitat Stebbins ND, Ouimet MA, Uhrich KE (2014) Antibiotic-containing polymers for localized, sustained drug delivery. Adv Drug Deliv Rev 78:77–87PubMedCrossRef Stebbins ND, Ouimet MA, Uhrich KE (2014) Antibiotic-containing polymers for localized, sustained drug delivery. Adv Drug Deliv Rev 78:77–87PubMedCrossRef
58.
Zurück zum Zitat Ferraro MJ (2001) Should we reevaluate antibiotic breakpoints? Clin Infect Dis 33(Suppl 3):S227–S229PubMedCrossRef Ferraro MJ (2001) Should we reevaluate antibiotic breakpoints? Clin Infect Dis 33(Suppl 3):S227–S229PubMedCrossRef
59.
Zurück zum Zitat Jorgensen JH (2004) Who defines resistance? The clinical and economic impact of antimicrobial susceptibility testing breakpoints. Semin Pediatr Infect Dis 15(2):105–108PubMedCrossRef Jorgensen JH (2004) Who defines resistance? The clinical and economic impact of antimicrobial susceptibility testing breakpoints. Semin Pediatr Infect Dis 15(2):105–108PubMedCrossRef
60.
Zurück zum Zitat Kumar, Vrinda S, Vinayan KP (2024) Comparative in vivo biodistribution and pharmacokinetic evaluation of phenytoin sodium loaded polymeric nanomicelles and marketed phenytoin sodium iv. J Nanoparticle Res 26(2):24CrossRef Kumar, Vrinda S, Vinayan KP (2024) Comparative in vivo biodistribution and pharmacokinetic evaluation of phenytoin sodium loaded polymeric nanomicelles and marketed phenytoin sodium iv. J Nanoparticle Res 26(2):24CrossRef
61.
Zurück zum Zitat Shariare MH et al (2024) Phospholipid-based nano drug delivery system of curcumin using MSP1D1 protein and poloxamer 407: a comparative study for targeted drug delivery to the brain. J Nanoparticle Res 26(1):12CrossRef Shariare MH et al (2024) Phospholipid-based nano drug delivery system of curcumin using MSP1D1 protein and poloxamer 407: a comparative study for targeted drug delivery to the brain. J Nanoparticle Res 26(1):12CrossRef
Metadaten
Titel
Magnetic dextran-spermine nanoparticles as pH-sensitive carriers for antibiotic delivery
verfasst von
Neda Abri
Ebrahim Vasheghani-Farahani
Hossein Shaki
Fariba Ganji
Samira Jafarzadeh-Holahg
Publikationsdatum
01.04.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2024
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-024-05979-4

Weitere Artikel der Ausgabe 4/2024

Journal of Nanoparticle Research 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.