Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Magnetic Force Microscopy Characterization of Magnetic Nanowires and Nanotubes

verfasst von : Muhammad Ramzan Tabasum, Fatih Zighem, Luc Piraux, Bernard Nysten

Erschienen in: Magnetic Characterization Techniques for Nanomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic force microscopy (MFM) is one of the operational modes of atomic force microscopy (AFM). In this mode, a magnetic probe is brought close to the sample surface and interacts with the magnetic stray fields emanating from the sample. The strength of the local magnetostatic interaction determines the vertical motion of the tip as it scans across the sample. Since early 1990s, it has been widely used in fundamental research on magnetic materials, as well as in the development of magnetic recording components. It has the capacity to map the local stray fields emanating from individual magnetic nanostructures of the sample, hence providing insight into its magnetic behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alberto PG (2009) Principles of nanomagnetism. Springer, Berlin/Heidelberg Alberto PG (2009) Principles of nanomagnetism. Springer, Berlin/Heidelberg
2.
Zurück zum Zitat Encinas A, Vila L, Darques M, George JM, Piraux L (2007) Configurable multiband microwave absorption states prepared by field cycling in arrays of magnetic nanowires. Nanotechnology, 18:065705 Encinas A, Vila L, Darques M, George JM, Piraux L (2007) Configurable multiband microwave absorption states prepared by field cycling in arrays of magnetic nanowires. Nanotechnology, 18:065705
3.
Zurück zum Zitat Darques M, Spiegel J, De la Torre Medina J, Huynen I, Piraux L (2009) Ferromagnetic nanowire-loaded membranes for microwave electronics. J Magn Magn Mater 321:2055CrossRef Darques M, Spiegel J, De la Torre Medina J, Huynen I, Piraux L (2009) Ferromagnetic nanowire-loaded membranes for microwave electronics. J Magn Magn Mater 321:2055CrossRef
4.
Zurück zum Zitat Hamoir G, Piraux L, Huynen I (2013) Control of microwave circulation using unbiased ferromagnetic nanowires arrays. IEEE Trans Magn 49(7):4261CrossRef Hamoir G, Piraux L, Huynen I (2013) Control of microwave circulation using unbiased ferromagnetic nanowires arrays. IEEE Trans Magn 49(7):4261CrossRef
5.
Zurück zum Zitat Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227CrossRef Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227CrossRef
6.
Zurück zum Zitat Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Lett 4(4):665CrossRef Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Lett 4(4):665CrossRef
7.
Zurück zum Zitat Nielsch K, Wehrspohn RB, Fischer SF, Kronmiller H, Kirsehner J, Gosele U (2001) Magnetic properties of 100 nm-period nickel nanowire arrays obtained from ordered porous-alumina templates. Mater Res Soc Symp Proc 9:636 Nielsch K, Wehrspohn RB, Fischer SF, Kronmiller H, Kirsehner J, Gosele U (2001) Magnetic properties of 100 nm-period nickel nanowire arrays obtained from ordered porous-alumina templates. Mater Res Soc Symp Proc 9:636
8.
Zurück zum Zitat Wang T, Wang Y, Fu Y, Hasegawa T, Oshima H, Itoh K, Nishio K, Masuda H, Li FS, Saito H, Ishio S (2008) Magnetic behavior in an ordered Co nanorod array. Nanotechnology 19:455703CrossRef Wang T, Wang Y, Fu Y, Hasegawa T, Oshima H, Itoh K, Nishio K, Masuda H, Li FS, Saito H, Ishio S (2008) Magnetic behavior in an ordered Co nanorod array. Nanotechnology 19:455703CrossRef
9.
Zurück zum Zitat Proenca MP, Sousa CT, Escrig J, Ventura J, Vazquez M, Araujo JP (2013) Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays. J Appl Phys 113:093907CrossRef Proenca MP, Sousa CT, Escrig J, Ventura J, Vazquez M, Araujo JP (2013) Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays. J Appl Phys 113:093907CrossRef
10.
Zurück zum Zitat Li J, Papadopoulos C, Xu JM (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367CrossRef Li J, Papadopoulos C, Xu JM (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367CrossRef
11.
Zurück zum Zitat Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989CrossRef Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989CrossRef
12.
Zurück zum Zitat Martin CR, Baker LA (2005) Expanding the molecular electronics toolbox. Science 309:67CrossRef Martin CR, Baker LA (2005) Expanding the molecular electronics toolbox. Science 309:67CrossRef
13.
Zurück zum Zitat Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29CrossRef Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29CrossRef
14.
Zurück zum Zitat Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Antibody-based bio/nanotube membranes for enantiomeric drug separations. Science 296:2198CrossRef Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Antibody-based bio/nanotube membranes for enantiomeric drug separations. Science 296:2198CrossRef
15.
Zurück zum Zitat Escrig J, Altbir D, Jaafar M, Navas D, Asenjo A, Vázquez M (2007) Remanence of Ni nanowires: influence of size and labyrinth magnetic structure. Phys Rev B 75:184429CrossRef Escrig J, Altbir D, Jaafar M, Navas D, Asenjo A, Vázquez M (2007) Remanence of Ni nanowires: influence of size and labyrinth magnetic structure. Phys Rev B 75:184429CrossRef
16.
Zurück zum Zitat Lee J, Suess D, Schrefl T, Oh KH, Fidler J (2007) Magnetic characteristics of ferromagnetic nanotube. J Magn Magn Mater 310:2445CrossRef Lee J, Suess D, Schrefl T, Oh KH, Fidler J (2007) Magnetic characteristics of ferromagnetic nanotube. J Magn Magn Mater 310:2445CrossRef
17.
Zurück zum Zitat Choi D, Park J, Kim S, Gracias D, Cho M, Kim Y, Fung A, Lee S, Chen Y, Khanal S, Baral S, Kim J (2008) Hyperthermia with magnetic nanowires for inactivating living cells. J Nanosci Nanotechnol 8:1–5CrossRef Choi D, Park J, Kim S, Gracias D, Cho M, Kim Y, Fung A, Lee S, Chen Y, Khanal S, Baral S, Kim J (2008) Hyperthermia with magnetic nanowires for inactivating living cells. J Nanosci Nanotechnol 8:1–5CrossRef
18.
Zurück zum Zitat Albrecht TT, Schotter TJ, Kästle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290:2126CrossRef Albrecht TT, Schotter TJ, Kästle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290:2126CrossRef
19.
Zurück zum Zitat Nicoleta L (2010) Electrodeposited nanowires and their applications. Intech-Olajnica, vol. 1, p 141 Nicoleta L (2010) Electrodeposited nanowires and their applications. Intech-Olajnica, vol. 1, p 141
20.
Zurück zum Zitat Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338CrossRef Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338CrossRef
21.
Zurück zum Zitat Encinas-Oropesa A, Demand M, Piraux L, Huynen I, Ebels U (2001) Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys Rev B 63:104415CrossRef Encinas-Oropesa A, Demand M, Piraux L, Huynen I, Ebels U (2001) Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys Rev B 63:104415CrossRef
22.
Zurück zum Zitat Vazquez M, Hernandez-Velez M, Pirota K, Asenjo A, Navas D, Velazquez J, Vargas P, Ramos C (2004) Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering. Eur Phys J B40:489CrossRef Vazquez M, Hernandez-Velez M, Pirota K, Asenjo A, Navas D, Velazquez J, Vargas P, Ramos C (2004) Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering. Eur Phys J B40:489CrossRef
23.
Zurück zum Zitat Navas D, Asenjo A, Jaafar M, Pirota KR, Hernandez-Velez M, Sanz R, Lee W, Nielsch K, Batallan F, Vazquez M (2005) Magnetic behavior of NixFe (100-x) (65 < x < 100) nanowire arrays. J Magn Magn Mater 290:191CrossRef Navas D, Asenjo A, Jaafar M, Pirota KR, Hernandez-Velez M, Sanz R, Lee W, Nielsch K, Batallan F, Vazquez M (2005) Magnetic behavior of NixFe (100-x) (65 < x < 100) nanowire arrays. J Magn Magn Mater 290:191CrossRef
24.
Zurück zum Zitat Sun L, Hao Y, Chien CL, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:1CrossRef Sun L, Hao Y, Chien CL, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:1CrossRef
25.
Zurück zum Zitat Han XF, Shamaila S, Sharif R, Chen JY, Liu HR, Dong-Ping L (2009) Structural and magnetic properties of various ferromagnetic nanotubes. Adv Mater 21:4619CrossRef Han XF, Shamaila S, Sharif R, Chen JY, Liu HR, Dong-Ping L (2009) Structural and magnetic properties of various ferromagnetic nanotubes. Adv Mater 21:4619CrossRef
26.
Zurück zum Zitat Rosa WO, Jaafar M, Asenjo A, Vázquez M (2009) Co nanostructured array in patterned polymeric template. J Appl Phys 105:07C108CrossRef Rosa WO, Jaafar M, Asenjo A, Vázquez M (2009) Co nanostructured array in patterned polymeric template. J Appl Phys 105:07C108CrossRef
27.
Zurück zum Zitat Sun L, Chen Q (2009) Core-shell cylindrical magnetic domains in Nickel nanowires prepared under magnetic flux. J Phys Chem C113:2710 Sun L, Chen Q (2009) Core-shell cylindrical magnetic domains in Nickel nanowires prepared under magnetic flux. J Phys Chem C113:2710
28.
Zurück zum Zitat Eftekhari A (2008) Nanostructured materials in electrochemistry. Wiley-VCH, WeinheimCrossRef Eftekhari A (2008) Nanostructured materials in electrochemistry. Wiley-VCH, WeinheimCrossRef
29.
Zurück zum Zitat Asenjo A, Garcia JM, Vazquez M (2001) Magnetic force microscopy: an advance technique for the observation of magnetic domains and walls. Recent Res Dev Magn 2:25 Asenjo A, Garcia JM, Vazquez M (2001) Magnetic force microscopy: an advance technique for the observation of magnetic domains and walls. Recent Res Dev Magn 2:25
30.
Zurück zum Zitat Jaafar M, Gomez-Herrero J, Gil A, Ares P, Vazquez M, Asenjo A (2009) Variable field magnetic force microscopy. Ultramicroscopy 109:693CrossRef Jaafar M, Gomez-Herrero J, Gil A, Ares P, Vazquez M, Asenjo A (2009) Variable field magnetic force microscopy. Ultramicroscopy 109:693CrossRef
31.
Zurück zum Zitat Pei WL, Qin GW, Ren YP, Li S, Wang T, Hasegawa H, Ishio S, Yamane H (2011) Incoherent magnetization reversal in Co–Pt nanodots investigated by magnetic force microscopy. Acta Mater 59:4818CrossRef Pei WL, Qin GW, Ren YP, Li S, Wang T, Hasegawa H, Ishio S, Yamane H (2011) Incoherent magnetization reversal in Co–Pt nanodots investigated by magnetic force microscopy. Acta Mater 59:4818CrossRef
32.
Zurück zum Zitat Jaafar M, Iglesias-Freire O, Serrano-Ramón L, Ibarra MR, de Teresa JM, Asenjo A (2011) Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination. Beilstein J Nanotechnol 2:552CrossRef Jaafar M, Iglesias-Freire O, Serrano-Ramón L, Ibarra MR, de Teresa JM, Asenjo A (2011) Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination. Beilstein J Nanotechnol 2:552CrossRef
33.
Zurück zum Zitat Piraux L, Antohe VA, Abreu Araujo F, Srivastava SK, Hehn M, Lacour D, Mangin S, Hauet T (2012) Periodic arrays of magnetic nanostructures by depositing Co/Pt multilayers on the barrier layer of ordered anodic alumina templates. Appl Phys Lett 101:013110CrossRef Piraux L, Antohe VA, Abreu Araujo F, Srivastava SK, Hehn M, Lacour D, Mangin S, Hauet T (2012) Periodic arrays of magnetic nanostructures by depositing Co/Pt multilayers on the barrier layer of ordered anodic alumina templates. Appl Phys Lett 101:013110CrossRef
34.
Zurück zum Zitat Tabasum MR, Zighem F, Medina JDLT, Encinas A, Piraux L, Nysten B (2014) Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. Nanotechnology 25:245707CrossRef Tabasum MR, Zighem F, Medina JDLT, Encinas A, Piraux L, Nysten B (2014) Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. Nanotechnology 25:245707CrossRef
35.
Zurück zum Zitat Sorop TG, Untiedt C, Luis F, Kröll M, Rasa M, de Jongh LJ (2003) Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys Rev B 67:014402CrossRef Sorop TG, Untiedt C, Luis F, Kröll M, Rasa M, de Jongh LJ (2003) Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys Rev B 67:014402CrossRef
36.
Zurück zum Zitat Yuan J, Pei W, Hasagawa T, Washiyaa T, Saito H, Ishio S, Oshima H, Itoh K (2008) Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy. J Magn Magn Mater 320:736CrossRef Yuan J, Pei W, Hasagawa T, Washiyaa T, Saito H, Ishio S, Oshima H, Itoh K (2008) Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy. J Magn Magn Mater 320:736CrossRef
37.
Zurück zum Zitat Tabasum MR, Zighem F, De La Torre Medina J, Piraux L, Nysten B (2013a) Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by in situ magnetic force microscopy. J Superconduct Novel Magn 26: 1375; Tabasum MR, Zighem F, Medina JDLT, Encinas A, Piraux L, Nysten B (2013b) Magnetic force microscopy study of the switching field distribution of low density arrays of single domain magnetic nanowires. J Appl Phys 113: 183908 Tabasum MR, Zighem F, De La Torre Medina J, Piraux L, Nysten B (2013a) Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by in situ magnetic force microscopy. J Superconduct Novel Magn 26: 1375; Tabasum MR, Zighem F, Medina JDLT, Encinas A, Piraux L, Nysten B (2013b) Magnetic force microscopy study of the switching field distribution of low density arrays of single domain magnetic nanowires. J Appl Phys 113: 183908
38.
Zurück zum Zitat Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminium. J Electrochem Soc 100(9):411CrossRef Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminium. J Electrochem Soc 100(9):411CrossRef
39.
Zurück zum Zitat Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466CrossRef Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466CrossRef
40.
Zurück zum Zitat Daub M, Knez M, Goesele U, Nielsch K (2007) Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. J Appl Phys 101:09J111CrossRef Daub M, Knez M, Goesele U, Nielsch K (2007) Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. J Appl Phys 101:09J111CrossRef
41.
Zurück zum Zitat Schlorb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fahler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247(10):2364CrossRef Schlorb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fahler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247(10):2364CrossRef
42.
Zurück zum Zitat Vater P (1988) Production and applications of nuclear track micro filter. Nucl Tracks Radiat Meas 15:743CrossRef Vater P (1988) Production and applications of nuclear track micro filter. Nucl Tracks Radiat Meas 15:743CrossRef
43.
Zurück zum Zitat Ferain E, Legras R (2003) Track-etch templates designed for micro- and nanofabrication. Nucl Instr Methods Phys Res B 208:115CrossRef Ferain E, Legras R (2003) Track-etch templates designed for micro- and nanofabrication. Nucl Instr Methods Phys Res B 208:115CrossRef
44.
Zurück zum Zitat Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts Chem Res 32:435CrossRef Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts Chem Res 32:435CrossRef
45.
Zurück zum Zitat Bao J, Tie C, Xu Z, Zhou Q, Shen D, Ma Q (2001) Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv Mater 13:21CrossRef Bao J, Tie C, Xu Z, Zhou Q, Shen D, Ma Q (2001) Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv Mater 13:21CrossRef
46.
Zurück zum Zitat Sui YC, Skomski R, Sorge KD, Sellmyer DJ (2004) Nanotube magnetism. Appl Phys Lett 84:1527CrossRef Sui YC, Skomski R, Sorge KD, Sellmyer DJ (2004) Nanotube magnetism. Appl Phys Lett 84:1527CrossRef
47.
Zurück zum Zitat Wang Q, Wang G, Han X, Wang X, Hou JG (2005) Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays: a one-step co-deposition and electrochemical etching method. J Phys Chem B 109:23326CrossRef Wang Q, Wang G, Han X, Wang X, Hou JG (2005) Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays: a one-step co-deposition and electrochemical etching method. J Phys Chem B 109:23326CrossRef
48.
Zurück zum Zitat Tao F, Guan M, Jiang Y, Zhu J, Xu Z, Xue Z (2006) An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method. Adv Mater 18:2161CrossRef Tao F, Guan M, Jiang Y, Zhu J, Xu Z, Xue Z (2006) An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method. Adv Mater 18:2161CrossRef
49.
Zurück zum Zitat Liu J, Wang F, Zhai J, Ji J (2010) Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays in AAO template. J Elect Chem 642:103 Liu J, Wang F, Zhai J, Ji J (2010) Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays in AAO template. J Elect Chem 642:103
50.
Zurück zum Zitat Rozman KZ, Pecko D, Suhodolcan L, McGuiness PJ, Kobe S (2011) Electrochemical syntheses of soft and hard magnetic Fe50Pd50-based nanotubes and their magnetic characterization. J Alloys Compd 509:551CrossRef Rozman KZ, Pecko D, Suhodolcan L, McGuiness PJ, Kobe S (2011) Electrochemical syntheses of soft and hard magnetic Fe50Pd50-based nanotubes and their magnetic characterization. J Alloys Compd 509:551CrossRef
51.
Zurück zum Zitat Aravena DS, Corona RM, Goerlitz D, Nielsch K, Escrig J (2013) Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. J Magn Magn Mater 346:171CrossRef Aravena DS, Corona RM, Goerlitz D, Nielsch K, Escrig J (2013) Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. J Magn Magn Mater 346:171CrossRef
52.
Zurück zum Zitat Zhang HM, Zhang XL, Zhang JJ, Li ZY, Sun HY (2013) Fabrication and magnetic properties of CoNi alloy nanotube arrays. J Magn Magn Mater 342:69CrossRef Zhang HM, Zhang XL, Zhang JJ, Li ZY, Sun HY (2013) Fabrication and magnetic properties of CoNi alloy nanotube arrays. J Magn Magn Mater 342:69CrossRef
53.
Zurück zum Zitat Chen YH, Duan JL, Yao HJ, Mo D, Liu TQ, Wang TS, Hou MD, Sun YM, Liu J (2014) Facile preparation and magnetic properties of Ni nanotubes in polycarbonate ion-track templates. Phys B 441:1CrossRef Chen YH, Duan JL, Yao HJ, Mo D, Liu TQ, Wang TS, Hou MD, Sun YM, Liu J (2014) Facile preparation and magnetic properties of Ni nanotubes in polycarbonate ion-track templates. Phys B 441:1CrossRef
54.
Zurück zum Zitat Galvan YV, Martınez-Huerta JM, De La Torre Medina J, Danlee Y, Piraux L, Encinas A (2014) Dipolar interaction in arrays of magnetic nanotubes. J Phys Condens Matter 26:026001CrossRef Galvan YV, Martınez-Huerta JM, De La Torre Medina J, Danlee Y, Piraux L, Encinas A (2014) Dipolar interaction in arrays of magnetic nanotubes. J Phys Condens Matter 26:026001CrossRef
55.
Zurück zum Zitat Karim S, Maaz K (2011) Magnetic behavior of arrays of nickel nanowires: effect of microstructure and aspect ratio. Mat Chem Phys 130:1103CrossRef Karim S, Maaz K (2011) Magnetic behavior of arrays of nickel nanowires: effect of microstructure and aspect ratio. Mat Chem Phys 130:1103CrossRef
56.
57.
Zurück zum Zitat Ferri FA, Pereira-da-Silva MA, Marega EJ (2012) In: Bellitto V (ed) Magnetic force microscopy: basic principles and applications, atomic force microscopy – imaging, measuring and manipulating surfaces at the atomic scale. ISBN: 978-953-51-0414-8 InTech Ferri FA, Pereira-da-Silva MA, Marega EJ (2012) In: Bellitto V (ed) Magnetic force microscopy: basic principles and applications, atomic force microscopy – imaging, measuring and manipulating surfaces at the atomic scale. ISBN: 978-953-51-0414-8 InTech
58.
Zurück zum Zitat Metzger RM, Konovalov VV, Sun M, Xu T, Zangari G, Xu B, Benakli M, Doyle WD (2000) Magnetic nanowires in hexagonally ordered pores of alumina. IEEE Trans Magn 36:30CrossRef Metzger RM, Konovalov VV, Sun M, Xu T, Zangari G, Xu B, Benakli M, Doyle WD (2000) Magnetic nanowires in hexagonally ordered pores of alumina. IEEE Trans Magn 36:30CrossRef
59.
Zurück zum Zitat McGary PD, Tan L, Zou J, Stadler BJH, Downey PR, Flatau AB (2006) Magnetic nanowires for acoustic sensors. J Appl Phys 99:08B310CrossRef McGary PD, Tan L, Zou J, Stadler BJH, Downey PR, Flatau AB (2006) Magnetic nanowires for acoustic sensors. J Appl Phys 99:08B310CrossRef
60.
Zurück zum Zitat Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U (2005) Electrochemical control and selection of the structural and magnetic properties of cobalt nanowires. Appl Phys Lett 86:072508CrossRef Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U (2005) Electrochemical control and selection of the structural and magnetic properties of cobalt nanowires. Appl Phys Lett 86:072508CrossRef
61.
Zurück zum Zitat Belliard L, Millat J, Thiaville A, Dubois S, Duvail JL, Piraux L (1998) Observing magnetic nanowires by means of magnetic force microscopy. J Magn Magn Mater 190:1CrossRef Belliard L, Millat J, Thiaville A, Dubois S, Duvail JL, Piraux L (1998) Observing magnetic nanowires by means of magnetic force microscopy. J Magn Magn Mater 190:1CrossRef
62.
Zurück zum Zitat Kou X, Fan X, Dumas RK, Lu Q, Zhang Y, Zhu H, Zhang X, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393CrossRef Kou X, Fan X, Dumas RK, Lu Q, Zhang Y, Zhu H, Zhang X, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393CrossRef
63.
Zurück zum Zitat Chen YJ, Huang TL, Shi JZ, Deng J, Ding J, Li WM, Leong SH, Zong BY, Hnin Yu Yu Ko, Hu SB, Zhao JM (2012) Individual bit island reversal and switching field distribution in perpendicular magnetic bit patterned media. J Magn Magn Mater 324:264CrossRef Chen YJ, Huang TL, Shi JZ, Deng J, Ding J, Li WM, Leong SH, Zong BY, Hnin Yu Yu Ko, Hu SB, Zhao JM (2012) Individual bit island reversal and switching field distribution in perpendicular magnetic bit patterned media. J Magn Magn Mater 324:264CrossRef
64.
Zurück zum Zitat Asenjo A, Jaafar M, Navas D, Vázquez M (2006) Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays. J Appl Phys 100:023909CrossRef Asenjo A, Jaafar M, Navas D, Vázquez M (2006) Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays. J Appl Phys 100:023909CrossRef
65.
Zurück zum Zitat Sharif R, Shamaila S, Ma M, Yao LD, Yu RC, Han XF, Khaleeq-ur-Rahman M (2008) Magnetic switching of ferromagnetic nanotubes. Appl Phys Lett 92:032505CrossRef Sharif R, Shamaila S, Ma M, Yao LD, Yu RC, Han XF, Khaleeq-ur-Rahman M (2008) Magnetic switching of ferromagnetic nanotubes. Appl Phys Lett 92:032505CrossRef
66.
Zurück zum Zitat Chen AP, Gonzalez J, Guslienko KY (2012) Domain walls confined in magnetic nanotubes with uniaxial anisotropy. J Magn Magn Mater 324:3912CrossRef Chen AP, Gonzalez J, Guslienko KY (2012) Domain walls confined in magnetic nanotubes with uniaxial anisotropy. J Magn Magn Mater 324:3912CrossRef
67.
Zurück zum Zitat Lopez-Lopez JA, Cortés-Ortuno D, Landeros P (2012) Role of anisotropy on the domain wall properties of ferromagnetic nanotubes. J Magn Magn Mater 324:2024CrossRef Lopez-Lopez JA, Cortés-Ortuno D, Landeros P (2012) Role of anisotropy on the domain wall properties of ferromagnetic nanotubes. J Magn Magn Mater 324:2024CrossRef
68.
Zurück zum Zitat Zhang Z, Zhang H, Wu T, Li Z, Zhang Z, Sun H (2013) Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J Magn Magn Mater 331:162CrossRef Zhang Z, Zhang H, Wu T, Li Z, Zhang Z, Sun H (2013) Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J Magn Magn Mater 331:162CrossRef
69.
Zurück zum Zitat Wang XW, Yuan ZH, Fang BC (2011) Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater Chem Phys 125:1CrossRef Wang XW, Yuan ZH, Fang BC (2011) Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater Chem Phys 125:1CrossRef
70.
Zurück zum Zitat Landeros P, Allende S, Escrig J, Salcedo E, Altbir D (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501CrossRef Landeros P, Allende S, Escrig J, Salcedo E, Altbir D (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501CrossRef
71.
Zurück zum Zitat Usov NA, Zhukov A, Gonzalez J (2007) Domain walls and magnetization reversal process in soft magnetic nanowires and nanotubes. J Magn Magn Mater 316:255CrossRef Usov NA, Zhukov A, Gonzalez J (2007) Domain walls and magnetization reversal process in soft magnetic nanowires and nanotubes. J Magn Magn Mater 316:255CrossRef
72.
Zurück zum Zitat Escrig J, Landeros P, Altbir D, Vogel EE, Vargas P (2007) Phase diagrams of magnetic nanotubes. J Magn Magn Mater 308:233CrossRef Escrig J, Landeros P, Altbir D, Vogel EE, Vargas P (2007) Phase diagrams of magnetic nanotubes. J Magn Magn Mater 308:233CrossRef
74.
Zurück zum Zitat Aharoni A, Shtrikman S (1958) Magnetization curve of the infinite cylinder. Phys Rev 109:1522CrossRef Aharoni A, Shtrikman S (1958) Magnetization curve of the infinite cylinder. Phys Rev 109:1522CrossRef
75.
Zurück zum Zitat Zighem F, Maurer T, Ott F, Chaboussant G (2011) Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study. J Appl Phys 109:013910CrossRef Zighem F, Maurer T, Ott F, Chaboussant G (2011) Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study. J Appl Phys 109:013910CrossRef
76.
Zurück zum Zitat Ferré R, Ounadjela K, George JM, Piraux L, Dubois S (1997) Magnetization processes in nickel and cobalt electrodeposited nanowires. Phys Rev B 56:14066CrossRef Ferré R, Ounadjela K, George JM, Piraux L, Dubois S (1997) Magnetization processes in nickel and cobalt electrodeposited nanowires. Phys Rev B 56:14066CrossRef
77.
Zurück zum Zitat Wang XW, Fei GT, Chen L, Xu XJ, Zhang LD (2007) Orientation-controllable growth of Ni nanowire arrays with different diameters. Electrochem Solid-State Lett 10(4):E1–E3 Wang XW, Fei GT, Chen L, Xu XJ, Zhang LD (2007) Orientation-controllable growth of Ni nanowire arrays with different diameters. Electrochem Solid-State Lett 10(4):E1–E3
78.
Zurück zum Zitat Nam B, Kim J, Hyeon JJ (2012) Analysis of effective permeability behaviors of magnetic hollow fibers filled in composite. J Appl Phys 111:07E347CrossRef Nam B, Kim J, Hyeon JJ (2012) Analysis of effective permeability behaviors of magnetic hollow fibers filled in composite. J Appl Phys 111:07E347CrossRef
79.
Zurück zum Zitat Fischbacher T, Franchin M, Bordignon G, Fangohr H (2007) A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: NMAG. IEEE Trans Magn 43:2896CrossRef Fischbacher T, Franchin M, Bordignon G, Fangohr H (2007) A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: NMAG. IEEE Trans Magn 43:2896CrossRef
80.
Zurück zum Zitat Rozman KZ, Rhein F, Wolff U, Neu V (2014) Single-vortex magnetization distribution and its reversal behaviour in Co-Pt nanotubes. Acta Mater 81:469CrossRef Rozman KZ, Rhein F, Wolff U, Neu V (2014) Single-vortex magnetization distribution and its reversal behaviour in Co-Pt nanotubes. Acta Mater 81:469CrossRef
Metadaten
Titel
Magnetic Force Microscopy Characterization of Magnetic Nanowires and Nanotubes
verfasst von
Muhammad Ramzan Tabasum
Fatih Zighem
Luc Piraux
Bernard Nysten
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-52780-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.