Skip to main content

2017 | OriginalPaper | Buchkapitel

15. Magnetic Nanoparticles Used as Contrast Agents in MRI: Relaxometric Characterisation

verfasst von : Marc-André Fortin

Erschienen in: Magnetic Characterization Techniques for Nanomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic resonance imaging (MRI) has developed at an exponential rate over the last decades, and the development of contrast agents to enhance the visualization of organs has followed the same trend. Meanwhile, magnetic nanoparticles that generate either “positive” or “negative” contrast in MRI have become one of the most important biomedical applications of nanotechnology. Indeed, superparamagnetic iron oxide nanoparticles, as negative contrast agents for T 2/T 2 * -weighted imaging, have found numerous applications in preclinical and clinical MRI (cell labeling, vascular contrast, lymph node imaging, liver contrast). In addition to this, paramagnetic and antiferromagnetic nanoparticles based on the elements Gd3+ and Mn2+ have mainly been exploited in vascular procedures and targeted imaging, for their capacity to enhance the MR signal of blood and of molecular signatures of endovascular disease. They are commonly referred to as “positive” contrast agents for T 1-weighted imaging.
The present chapter is an introduction to the fundamental principles of nanoparticle-based MRI contrast agents. It addresses the main considerations guiding the relaxometric characterization of aqueous suspensions of magnetic nanoparticles, based on the elements iron, manganese, and gadolinium (Fe, Mn, Gd). The relaxivity of MRI contrast agents depends on their nanoparticulate structure, on their magnetic properties, on the distance between water molecules and their surface, and on the kinetics and rotational rate of the compound in biological fluids and in tissues. Among the main parameters guiding the relaxation time of water protons in the vicinity of contrast agents, figure the number of water molecules bound to the contrast agent, the size of the nanocrystals, the total hydrodynamic diameter of nanoparticles, their rotational correlation time, and the exchange rate between the water and the nanoparticle surface.
The general magnetic and relaxometric characteristics of the major classes of nanoparticles used as MRI contrast agents will be reviewed. Examples of nuclear magnetic relaxation dispersion profiles (NMRD), revealing the relaxometric potential of magnetic particles at increasing magnetic field strengths, are also presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stark DD, Bradley WG (1999) Magnetic resonance imaging, 3rd edn. C.V.Mosby, St-Louis, p 44 Stark DD, Bradley WG (1999) Magnetic resonance imaging, 3rd edn. C.V.Mosby, St-Louis, p 44
2.
Zurück zum Zitat Bushberg JT (2012) The essential physics of medical imaging. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia Bushberg JT (2012) The essential physics of medical imaging. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia
3.
Zurück zum Zitat Hashemi RH, Bradley WG, Lisanti CJ (2010) Ovid Technologies Inc. MRI the basics. Lippincott Williams & Wilkins, Philadelphia, p ix, 385 p Hashemi RH, Bradley WG, Lisanti CJ (2010) Ovid Technologies Inc. MRI the basics. Lippincott Williams & Wilkins, Philadelphia, p ix, 385 p
4.
Zurück zum Zitat Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523CrossRef Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523CrossRef
5.
Zurück zum Zitat Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352CrossRef Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352CrossRef
6.
Zurück zum Zitat Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724CrossRef Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724CrossRef
7.
Zurück zum Zitat Merbach AS, Helm L,Tόth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Hoboken, p 1 texte électronique (514 p) Merbach AS, Helm L,Tόth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Hoboken, p 1 texte électronique (514 p)
8.
Zurück zum Zitat Faucher L, Gossuin Y, Hocq A, Fortin MA (2011) Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 22:295103CrossRef Faucher L, Gossuin Y, Hocq A, Fortin MA (2011) Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 22:295103CrossRef
9.
Zurück zum Zitat Faucher L, Tremblay M, Lagueux J, Gossuin Y, Fortin MA (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4:4506–4515CrossRef Faucher L, Tremblay M, Lagueux J, Gossuin Y, Fortin MA (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4:4506–4515CrossRef
10.
Zurück zum Zitat Letourneau M, Tremblay M, Faucher L, Rojas D, Chevallier P, Gossuin Y, Lagueux J, Fortin MA (2012) MnO-labeled cells: positive contrast enhancement in MRI. J Phys Chem B 116:13228–13238CrossRef Letourneau M, Tremblay M, Faucher L, Rojas D, Chevallier P, Gossuin Y, Lagueux J, Fortin MA (2012) MnO-labeled cells: positive contrast enhancement in MRI. J Phys Chem B 116:13228–13238CrossRef
11.
Zurück zum Zitat Naccache R, Chevallier P, Lagueux J, Gossuin Y, Laurent S, Vander Elst L, Chilian C, Capobianco JA, Fortin MA (2013) High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging. Adv Healthc Mater 2:1478–1488CrossRef Naccache R, Chevallier P, Lagueux J, Gossuin Y, Laurent S, Vander Elst L, Chilian C, Capobianco JA, Fortin MA (2013) High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging. Adv Healthc Mater 2:1478–1488CrossRef
12.
Zurück zum Zitat Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084CrossRef Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084CrossRef
13.
Zurück zum Zitat Na HB, Hyeon T (2009) Nanostructured T1 MRI contrast agents. J Mater Chem 19:6267–6273CrossRef Na HB, Hyeon T (2009) Nanostructured T1 MRI contrast agents. J Mater Chem 19:6267–6273CrossRef
14.
Zurück zum Zitat Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T-1 MR1 contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T-1 MR images. ACS Nano 3:3663–3669CrossRef Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T-1 MR1 contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T-1 MR images. ACS Nano 3:3663–3669CrossRef
15.
Zurück zum Zitat Faucher L, Guay-Bégin AA, Lagueux J, Côté MF, Petitclerc E, Fortin MA (2011) Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 6:209–218 Faucher L, Guay-Bégin AA, Lagueux J, Côté MF, Petitclerc E, Fortin MA (2011) Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 6:209–218
16.
Zurück zum Zitat Grobner T, Prischl FC (2007) Gadolinium and nephrogenic systemic fibrosis. Kidney Int 72:260–264CrossRef Grobner T, Prischl FC (2007) Gadolinium and nephrogenic systemic fibrosis. Kidney Int 72:260–264CrossRef
17.
Zurück zum Zitat Penfield JG, Reilly RF Jr (2007) What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3:654–668CrossRef Penfield JG, Reilly RF Jr (2007) What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3:654–668CrossRef
18.
Zurück zum Zitat Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRef Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRef
19.
Zurück zum Zitat Engström M, Klasson A, Pedersen H, Vahlberg C, Käll PO, Uvdal K (2006) High proton relaxivity for gadolinium oxide nanoparticles. MAGMA 19:180–186CrossRef Engström M, Klasson A, Pedersen H, Vahlberg C, Käll PO, Uvdal K (2006) High proton relaxivity for gadolinium oxide nanoparticles. MAGMA 19:180–186CrossRef
20.
Zurück zum Zitat Ahren M, Selegard L, Klasson A, Soderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll PO, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 26:5753–5762CrossRef Ahren M, Selegard L, Klasson A, Soderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll PO, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 26:5753–5762CrossRef
21.
Zurück zum Zitat Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, Wu DM, Li FY (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32:1148–1156 Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, Wu DM, Li FY (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32:1148–1156
22.
Zurück zum Zitat Cheung ENM, Alvares RDA, Oakden W, Chaudhary R, Hill ML, Pichaandi J, Mo GCH, Yip C, Macdonald PM, Stanisz GJ, van Veggel FCJM, Prosser RS (2010) Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem Mater 22:4728–4739CrossRef Cheung ENM, Alvares RDA, Oakden W, Chaudhary R, Hill ML, Pichaandi J, Mo GCH, Yip C, Macdonald PM, Stanisz GJ, van Veggel FCJM, Prosser RS (2010) Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem Mater 22:4728–4739CrossRef
23.
Zurück zum Zitat Chen GY, Ohulchanskyy TY, Law WC, Agren H, Prasad PN (2011) Monodisperse NaYbF4: Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3:2003–2008CrossRef Chen GY, Ohulchanskyy TY, Law WC, Agren H, Prasad PN (2011) Monodisperse NaYbF4: Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3:2003–2008CrossRef
24.
Zurück zum Zitat Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 46:5397–5401CrossRef Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 46:5397–5401CrossRef
25.
Zurück zum Zitat Schladt TD, Schneider K, Shukoor MI, Natalio F, Bauer H, Tahir MN, Weber S, Schreiber LM, Schroder HC, Muller WEG, Tremel W (2010) Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy. J Mater Chem 20:8297–8304CrossRef Schladt TD, Schneider K, Shukoor MI, Natalio F, Bauer H, Tahir MN, Weber S, Schreiber LM, Schroder HC, Muller WEG, Tremel W (2010) Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy. J Mater Chem 20:8297–8304CrossRef
26.
Zurück zum Zitat Simon GH, Von Vopelius-Feldt J, Fu Y, Schlegel J, Pinotek G, Wendland MF, Chen MH, Daldrup-Link HE (2006) Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Invest Radiol 41:45–51CrossRef Simon GH, Von Vopelius-Feldt J, Fu Y, Schlegel J, Pinotek G, Wendland MF, Chen MH, Daldrup-Link HE (2006) Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Invest Radiol 41:45–51CrossRef
27.
Zurück zum Zitat Koretsky AP, Silva AC (2004) Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17:527–531CrossRef Koretsky AP, Silva AC (2004) Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17:527–531CrossRef
28.
Zurück zum Zitat Lee JH, Koretsky AP (2004) Manganese enhanced magnetic resonance imaging. Curr Pharm Biotechnol 5:529–537CrossRef Lee JH, Koretsky AP (2004) Manganese enhanced magnetic resonance imaging. Curr Pharm Biotechnol 5:529–537CrossRef
29.
Zurück zum Zitat Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130CrossRef Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130CrossRef
30.
Zurück zum Zitat Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRef Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRef
31.
Zurück zum Zitat Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:299–310CrossRef Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:299–310CrossRef
32.
Zurück zum Zitat Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRef Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRef
33.
Zurück zum Zitat Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173CrossRef Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173CrossRef
34.
Zurück zum Zitat Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomed 2:609–622 Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomed 2:609–622
35.
Zurück zum Zitat Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRef Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRef
36.
Zurück zum Zitat Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338CrossRef Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338CrossRef
37.
Zurück zum Zitat Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef
38.
Zurück zum Zitat Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343CrossRef Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343CrossRef
39.
Zurück zum Zitat Rui H, Xing R, Xu Z, Hou Y, Goo S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742CrossRef Rui H, Xing R, Xu Z, Hou Y, Goo S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742CrossRef
40.
Zurück zum Zitat Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem 46:1222–1244CrossRef Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem 46:1222–1244CrossRef
41.
Zurück zum Zitat Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 10:481–487 Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 10:481–487
42.
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef
43.
Zurück zum Zitat Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9CrossRef Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9CrossRef
44.
Zurück zum Zitat Wormuth K (2001) Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci 241:366–377CrossRef Wormuth K (2001) Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci 241:366–377CrossRef
45.
Zurück zum Zitat Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16:3489–3496CrossRef Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16:3489–3496CrossRef
46.
Zurück zum Zitat Wan S, Huang J, Yan H, Liu K (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303CrossRef Wan S, Huang J, Yan H, Liu K (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303CrossRef
47.
Zurück zum Zitat Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRef Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRef
48.
Zurück zum Zitat Giri J, Guha Thakurta S, Bellare J, Kumar Nigam A, Bahadur D (2005) Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J Magn Magn Mater 293:62–68CrossRef Giri J, Guha Thakurta S, Bellare J, Kumar Nigam A, Bahadur D (2005) Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J Magn Magn Mater 293:62–68CrossRef
49.
Zurück zum Zitat Sun YK, Ma M, Zhang Y, Gu N (2004) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf A Physicochem Eng Asp 245:15–19CrossRef Sun YK, Ma M, Zhang Y, Gu N (2004) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf A Physicochem Eng Asp 245:15–19CrossRef
50.
Zurück zum Zitat Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef
51.
Zurück zum Zitat De Cuyper M, Joniau M (1988) Magnetoliposomes. Formation and structural characterization. Eur Biophys J 15:311–319CrossRef De Cuyper M, Joniau M (1988) Magnetoliposomes. Formation and structural characterization. Eur Biophys J 15:311–319CrossRef
52.
Zurück zum Zitat Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32–33:198–205CrossRef Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32–33:198–205CrossRef
53.
Zurück zum Zitat Tzitzios VK, Petridis D, Zafiropoulou I, Hadjipanayis G, Niarchos D (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt-Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294:e95–e98CrossRef Tzitzios VK, Petridis D, Zafiropoulou I, Hadjipanayis G, Niarchos D (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt-Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294:e95–e98CrossRef
54.
Zurück zum Zitat Sra AK, Ewers TD, Schaak RE (2005) Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem Mater 17:758–766CrossRef Sra AK, Ewers TD, Schaak RE (2005) Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem Mater 17:758–766CrossRef
55.
Zurück zum Zitat Joseyphus RJ, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310:2393–2395CrossRef Joseyphus RJ, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310:2393–2395CrossRef
56.
Zurück zum Zitat Hu F, MacRenaris KW, Waters EA, Liang T, Schultz-Sikma EA, Eckermann AL, Meade TJ (2009) Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J Phys Chem C 113:20855–20860CrossRef Hu F, MacRenaris KW, Waters EA, Liang T, Schultz-Sikma EA, Eckermann AL, Meade TJ (2009) Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J Phys Chem C 113:20855–20860CrossRef
57.
Zurück zum Zitat Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, Zhang W, Tillement O, Bernstein E, Perriat P (2003) Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J Lumin 102:445–450CrossRef Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, Zhang W, Tillement O, Bernstein E, Perriat P (2003) Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J Lumin 102:445–450CrossRef
58.
Zurück zum Zitat Söderlind F, Pedersen H, Petoral RM, Käll PO, Uvdal K (2005) Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J Colloid Interf Sci 288:140–148CrossRef Söderlind F, Pedersen H, Petoral RM, Käll PO, Uvdal K (2005) Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J Colloid Interf Sci 288:140–148CrossRef
59.
Zurück zum Zitat Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2477–2481. doi:10.1002/ejic.200900173 Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2477–2481. doi:10.​1002/​ejic.​200900173
60.
Zurück zum Zitat Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723 Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723
61.
Zurück zum Zitat Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19:2924–2929CrossRef Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19:2924–2929CrossRef
62.
Zurück zum Zitat Wong HT, Vetrone F, Naccache R, Chan HLW, Hao JH, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21:16589–16596 Wong HT, Vetrone F, Naccache R, Chan HLW, Hao JH, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21:16589–16596
63.
Zurück zum Zitat Morales MA, Skomski R, Fritz S, Shelburne G, Shield JE, Yin M, O’Brien S, Leslie-Pelecky DL (2007) Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys Rev B 75:134423 Morales MA, Skomski R, Fritz S, Shelburne G, Shield JE, Yin M, O’Brien S, Leslie-Pelecky DL (2007) Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys Rev B 75:134423
64.
Zurück zum Zitat Bertin A, Michou-Gallani AI, Gallani JL, Felder-Flesch D (2010) In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion. Toxicol In Vitro 24:1386–1394CrossRef Bertin A, Michou-Gallani AI, Gallani JL, Felder-Flesch D (2010) In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion. Toxicol In Vitro 24:1386–1394CrossRef
65.
Zurück zum Zitat Bertin A, Steibel J, Michou-Gallani AI, Gallani JL, Felder-Flesch D (2009) Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. Bioconjug Chem 20:760–767CrossRef Bertin A, Steibel J, Michou-Gallani AI, Gallani JL, Felder-Flesch D (2009) Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. Bioconjug Chem 20:760–767CrossRef
66.
Zurück zum Zitat Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109:3879–3885CrossRef Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109:3879–3885CrossRef
67.
Zurück zum Zitat Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging – preclinical in vivo characterization. Invest Radiol 37:167–177CrossRef Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging – preclinical in vivo characterization. Invest Radiol 37:167–177CrossRef
68.
Zurück zum Zitat Liu C, Huang PM (1999) Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci Soc Am J 63:65–72CrossRef Liu C, Huang PM (1999) Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci Soc Am J 63:65–72CrossRef
69.
Zurück zum Zitat Daou TJ, PourroyG, Greneche JM, Bertin A, Felder-Flesch D, Begin-Colin S (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Trans 23:4442–4449. doi:10.1039/b823187g Daou TJ, PourroyG, Greneche JM, Bertin A, Felder-Flesch D, Begin-Colin S (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Trans 23:4442–4449. doi:10.​1039/​b823187g
70.
Zurück zum Zitat Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRef Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRef
71.
Zurück zum Zitat McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 4:301–307CrossRef McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 4:301–307CrossRef
72.
Zurück zum Zitat Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499CrossRef Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499CrossRef
73.
Zurück zum Zitat Paul KG, Frigo TB, Groman JY, Groman EV (2004) Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15:394–401CrossRef Paul KG, Frigo TB, Groman JY, Groman EV (2004) Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15:394–401CrossRef
74.
Zurück zum Zitat Tiefenauer LX, Tschirky A, Kühne G, Andres RY (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402CrossRef Tiefenauer LX, Tschirky A, Kühne G, Andres RY (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402CrossRef
75.
Zurück zum Zitat Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318 Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318
76.
Zurück zum Zitat Papisov MI, Bogdanov A Jr, Schaffer B, Nossiff N, Shen T, Weissleder R, Brady TJ (1993) Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution. J Magn Magn Mater 122:383–386CrossRef Papisov MI, Bogdanov A Jr, Schaffer B, Nossiff N, Shen T, Weissleder R, Brady TJ (1993) Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution. J Magn Magn Mater 122:383–386CrossRef
77.
Zurück zum Zitat Fortin MA, Petoral RM, Söderlind F, Klasson A, Engström M, Veres T, Käll PO, Uvdal K (2007) Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18:395501 (395501–395509)CrossRef Fortin MA, Petoral RM, Söderlind F, Klasson A, Engström M, Veres T, Käll PO, Uvdal K (2007) Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18:395501 (395501–395509)CrossRef
78.
Zurück zum Zitat Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5:2565–2575CrossRef Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5:2565–2575CrossRef
79.
Zurück zum Zitat Shi ZL, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T-1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5:105–111 Shi ZL, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T-1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5:105–111
80.
Zurück zum Zitat Klasson A, Ahren M, Hällquist E, Rosén A, Käll PO, Uvdal K, Engström M (2008) Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol Imaging 3:106–111CrossRef Klasson A, Ahren M, Hällquist E, Rosén A, Käll PO, Uvdal K, Engström M (2008) Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol Imaging 3:106–111CrossRef
81.
Zurück zum Zitat Faucher L, Tremblay M, Gossuin Y, Rojas D, Chevallier P, Lacroix S, Fortin M-A (2011) Ultra-small nanoclusters of GdOx: a new, efficient contrast agent for in vivo cell tracking studies in T1-w. MRI. In: WMI Society (ed) World Molecular Imaging Congress, San Diego Faucher L, Tremblay M, Gossuin Y, Rojas D, Chevallier P, Lacroix S, Fortin M-A (2011) Ultra-small nanoclusters of GdOx: a new, efficient contrast agent for in vivo cell tracking studies in T1-w. MRI. In: WMI Society (ed) World Molecular Imaging Congress, San Diego
82.
Zurück zum Zitat Guay-Begin AA, Chevallier P, Faucher L, Turgeon S, Fortin MA (2011) Surface modification of gadolinium oxide thin films and nanoparticles using polyethylene glycol-phosphate. Langmuir ACS J Surf Colloid. doi:10.1021/la202780x Guay-Begin AA, Chevallier P, Faucher L, Turgeon S, Fortin MA (2011) Surface modification of gadolinium oxide thin films and nanoparticles using polyethylene glycol-phosphate. Langmuir ACS J Surf Colloid. doi:10.​1021/​la202780x
83.
Zurück zum Zitat Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S, Felder-Flesch D (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573CrossRef Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S, Felder-Flesch D (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573CrossRef
84.
Zurück zum Zitat Chevallier P, Walter A, Garofalo A, Veksler I, Lagueux J, Bégin-Colin S, Felder-Flesch D, Fortin M-A (2014) Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging. J Mater Chem B 2:1779–1790 Chevallier P, Walter A, Garofalo A, Veksler I, Lagueux J, Bégin-Colin S, Felder-Flesch D, Fortin M-A (2014) Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging. J Mater Chem B 2:1779–1790
85.
Zurück zum Zitat Banci L, Bertini L, Luchinat C (1991) Nuclear and electron relaxation. The magnetic nucleus-unpaired electron coupling in solution. In: Magnetic Resonance in Chemistry; Special issue: NMR in bioorganic chemistry. VCH, Ed, p S154 Banci L, Bertini L, Luchinat C (1991) Nuclear and electron relaxation. The magnetic nucleus-unpaired electron coupling in solution. In: Magnetic Resonance in Chemistry; Special issue: NMR in bioorganic chemistry. VCH, Ed, p S154
86.
Zurück zum Zitat Small WC, DeSimone-Macchi D, Parker JR, Sukerkar A, Hahn PF, Rubin DL, Zelch JV, Kuhlman JE, Outwater EK, Weinreb JC, Brown JJ, De Lange EE, Woodward PJ, Arildsen R, Foster GS, Runge VM, Aisen AM, Muroff LR, Thoeni RF, Parisky YR, Tanenbaum LN, Totterman S, Herfkens RJ, Knudsen J, Laster RE Jr, Duerinckx A, Stillman AE, Spritzer CE, Saini S, Rofsky NM, Bernardino ME (1999) A multisite phase iii study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis. J Magn Reson Imaging 10:15–24CrossRef Small WC, DeSimone-Macchi D, Parker JR, Sukerkar A, Hahn PF, Rubin DL, Zelch JV, Kuhlman JE, Outwater EK, Weinreb JC, Brown JJ, De Lange EE, Woodward PJ, Arildsen R, Foster GS, Runge VM, Aisen AM, Muroff LR, Thoeni RF, Parisky YR, Tanenbaum LN, Totterman S, Herfkens RJ, Knudsen J, Laster RE Jr, Duerinckx A, Stillman AE, Spritzer CE, Saini S, Rofsky NM, Bernardino ME (1999) A multisite phase iii study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis. J Magn Reson Imaging 10:15–24CrossRef
87.
Zurück zum Zitat Rocklage SM, Cacheris WP, Quay SC, Ekkehardt Hahn F, Raymond KN (1989) Manganese(II) N, N′-dipyridoxylethylenediamine-N, N′-diacetate 5,5′-bis(phosphate). Synthesis and characterization of a paramagnetic chelate for magnetic resonance imaging enhancement. Inorg Chem 28:477–485CrossRef Rocklage SM, Cacheris WP, Quay SC, Ekkehardt Hahn F, Raymond KN (1989) Manganese(II) N, N′-dipyridoxylethylenediamine-N, N′-diacetate 5,5′-bis(phosphate). Synthesis and characterization of a paramagnetic chelate for magnetic resonance imaging enhancement. Inorg Chem 28:477–485CrossRef
88.
Zurück zum Zitat O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New York O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New York
90.
Zurück zum Zitat Muller RN, Vander Elst L, Roch A, Peters JA, Csajbok E, Gillis P, Gossuin Y (2006) Relaxation by metal-containing nanosystems. Adv Inorg Chem 57:239–292 Muller RN, Vander Elst L, Roch A, Peters JA, Csajbok E, Gillis P, Gossuin Y (2006) Relaxation by metal-containing nanosystems. Adv Inorg Chem 57:239–292
91.
Zurück zum Zitat Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence, and uses. VCH, Weinheim/New York Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence, and uses. VCH, Weinheim/New York
92.
Zurück zum Zitat Neel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys Paris 3:137–198 Neel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys Paris 3:137–198
93.
Zurück zum Zitat Crangle J (1991) Solid-state magnetism. Van Nostrand Reinhold, New YorkCrossRef Crangle J (1991) Solid-state magnetism. Van Nostrand Reinhold, New YorkCrossRef
94.
Zurück zum Zitat Dormann JL (1981) Superparamagnetism phenomenon. Rev Phys Appl 16:275–301CrossRef Dormann JL (1981) Superparamagnetism phenomenon. Rev Phys Appl 16:275–301CrossRef
95.
Zurück zum Zitat Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef
96.
Zurück zum Zitat Chantrell RW, Lyberatos A, El-Hilo M, O’Grady K (1994) Models of slow relaxation in particulate and thin film materials (invited). J Appl Phys 76:6407–6412CrossRef Chantrell RW, Lyberatos A, El-Hilo M, O’Grady K (1994) Models of slow relaxation in particulate and thin film materials (invited). J Appl Phys 76:6407–6412CrossRef
97.
Zurück zum Zitat Dormann JL, Spinu L, Tronc E, Jolivet JP, Lucari F, D’Orazio F, Fiorani D (1998) Effect of interparticle interactions on the dynamical properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater 183:L255–L260CrossRef Dormann JL, Spinu L, Tronc E, Jolivet JP, Lucari F, D’Orazio F, Fiorani D (1998) Effect of interparticle interactions on the dynamical properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater 183:L255–L260CrossRef
98.
Zurück zum Zitat Dormann JL, D’Orazio F, Lucari F, Tronc E, Prené P, Jolivet JP, Fiorani D, Cherkaoui R, Noguès M (1996) Thermal variation of the relaxation time of the magnetic moment of γ-Fe2O3 nanoparticles with interparticle interactions of various strengths. Phys Rev B Condens Matter 53:14291–14297CrossRef Dormann JL, D’Orazio F, Lucari F, Tronc E, Prené P, Jolivet JP, Fiorani D, Cherkaoui R, Noguès M (1996) Thermal variation of the relaxation time of the magnetic moment of γ-Fe2O3 nanoparticles with interparticle interactions of various strengths. Phys Rev B Condens Matter 53:14291–14297CrossRef
99.
Zurück zum Zitat Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120S Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120S
100.
Zurück zum Zitat Bloembergen NJ, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679CrossRef Bloembergen NJ, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679CrossRef
101.
Zurück zum Zitat Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565CrossRef Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565CrossRef
102.
Zurück zum Zitat Solomon I, Bloembergen NJ (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261CrossRef Solomon I, Bloembergen NJ (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261CrossRef
103.
Zurück zum Zitat Bloembergen NJ (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27:573CrossRef Bloembergen NJ (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27:573CrossRef
104.
Zurück zum Zitat Bloembergen NJ, Morgan NO (1961) Proton relaxation times in paramagnetic solutions. J Chem Phys 34:842CrossRef Bloembergen NJ, Morgan NO (1961) Proton relaxation times in paramagnetic solutions. J Chem Phys 34:842CrossRef
106.
Zurück zum Zitat Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted F-19 nanoparticles. Magn Reson Med 52:1255–1262CrossRef Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted F-19 nanoparticles. Magn Reson Med 52:1255–1262CrossRef
107.
Zurück zum Zitat Luz Z, Meiboom S (1964) Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. J Chem Phys 40:2686–2692CrossRef Luz Z, Meiboom S (1964) Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. J Chem Phys 40:2686–2692CrossRef
108.
Zurück zum Zitat Swift TJ, Connick RE (1962) NMR-Relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J Chem Phys 37:307–320CrossRef Swift TJ, Connick RE (1962) NMR-Relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J Chem Phys 37:307–320CrossRef
109.
Zurück zum Zitat Noack F (1986) NMR field-cycling spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 18:171–276CrossRef Noack F (1986) NMR field-cycling spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 18:171–276CrossRef
110.
Zurück zum Zitat Merbach AE, Tôth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester/New York Merbach AE, Tôth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester/New York
111.
Zurück zum Zitat Freed JH (1978) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 68:4034–4037CrossRef Freed JH (1978) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 68:4034–4037CrossRef
112.
Zurück zum Zitat Bulte JM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3:641–648CrossRef Bulte JM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3:641–648CrossRef
113.
Zurück zum Zitat Hwang JS, Rao KVS, Freed JH (1976) An electron spin resonance study of the pressure dependence of ordering and spin relaxation in a liquid crystalline solvent. J Phys Chem 80:1490–1501CrossRef Hwang JS, Rao KVS, Freed JH (1976) An electron spin resonance study of the pressure dependence of ordering and spin relaxation in a liquid crystalline solvent. J Phys Chem 80:1490–1501CrossRef
114.
Zurück zum Zitat Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (vol 108, pg 2064, 2008). Chem Rev 110:2574–2574 Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (vol 108, pg 2064, 2008). Chem Rev 110:2574–2574
115.
Zurück zum Zitat Vuong QL, Berret JF, Fresnais J, Gossuin Y, Sandre O (2012) A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv Healthc Mater 1:502–512CrossRef Vuong QL, Berret JF, Fresnais J, Gossuin Y, Sandre O (2012) A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv Healthc Mater 1:502–512CrossRef
116.
Zurück zum Zitat Gossuin Y, Roch A, Muller RN, Gillis P (2002) An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents. J Magn Reson 158:36–42CrossRef Gossuin Y, Roch A, Muller RN, Gillis P (2002) An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents. J Magn Reson 158:36–42CrossRef
117.
Zurück zum Zitat Laprise-Pelletier M, Bouchoucha M, Lagueux J, Chevallier P, Lecomte R, Gossuin Y, Kleitz F, Fortin MA (2015) Metal chelate grafting at the surface of mesoporous silica nanoparticles (MSNs): physico-chemical and biomedical imaging assessment. J Mater Chem B 3:748–758CrossRef Laprise-Pelletier M, Bouchoucha M, Lagueux J, Chevallier P, Lecomte R, Gossuin Y, Kleitz F, Fortin MA (2015) Metal chelate grafting at the surface of mesoporous silica nanoparticles (MSNs): physico-chemical and biomedical imaging assessment. J Mater Chem B 3:748–758CrossRef
118.
Zurück zum Zitat Koenig SH, Baglin C, Brown Iii RD, Brewer CF (1984) Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes. Magn Reson Med 1:496–501 Koenig SH, Baglin C, Brown Iii RD, Brewer CF (1984) Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes. Magn Reson Med 1:496–501
119.
Zurück zum Zitat Koenig SH, Baglin CM, Brown Iii RD (1985) Magnetic field dependence of solvent proton relaxation in aqueous solutions of Fe3+ complexes. Magn Reson Med 2:283–288 Koenig SH, Baglin CM, Brown Iii RD (1985) Magnetic field dependence of solvent proton relaxation in aqueous solutions of Fe3+ complexes. Magn Reson Med 2:283–288
120.
Zurück zum Zitat Muller RN, Vallet P, Maton F, Roch A, Goudemant JF, Vander Elst L, Gillis P, Peto S, Moiny F, Van Haverbeke Y (1990) Recent developments in design, characterization, and understanding of MRI and MRS contrast media. Invest Radiol 25:S34–S36CrossRef Muller RN, Vallet P, Maton F, Roch A, Goudemant JF, Vander Elst L, Gillis P, Peto S, Moiny F, Van Haverbeke Y (1990) Recent developments in design, characterization, and understanding of MRI and MRS contrast media. Invest Radiol 25:S34–S36CrossRef
121.
Zurück zum Zitat Ouakssim A, Fastrez S, Roch A, Laurent S, Gossuin Y, Piérart C, Vander Elst L, Muller RN (2004) Control of the synthesis of magnetic fluids by relaxometry and magnetometry. J Magn Magn Mater 272–276:e1711–e1713CrossRef Ouakssim A, Fastrez S, Roch A, Laurent S, Gossuin Y, Piérart C, Vander Elst L, Muller RN (2004) Control of the synthesis of magnetic fluids by relaxometry and magnetometry. J Magn Magn Mater 272–276:e1711–e1713CrossRef
122.
Zurück zum Zitat Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403–5411CrossRef Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403–5411CrossRef
123.
Zurück zum Zitat Li W, Tutton S, Vu AT, Pierchala L, Li BSY, Lewis JM, Prasad PV, Edelman RR (2005) First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 21:46–52CrossRef Li W, Tutton S, Vu AT, Pierchala L, Li BSY, Lewis JM, Prasad PV, Edelman RR (2005) First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 21:46–52CrossRef
124.
Zurück zum Zitat Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674CrossRef Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674CrossRef
125.
Zurück zum Zitat Reimer P, Marx C, Rummeny EJ, Müller M, Lentschig M, Balzer T, Dietl KH, Sulkowski U, Berns T, Shamsi K, Peters PE (1997) SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 7:945–949CrossRef Reimer P, Marx C, Rummeny EJ, Müller M, Lentschig M, Balzer T, Dietl KH, Sulkowski U, Berns T, Shamsi K, Peters PE (1997) SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 7:945–949CrossRef
126.
Zurück zum Zitat Modo MMJJ, Bulte JWM (2007) Molecular and cellular MR imaging. CRC Press, Boca RatonCrossRef Modo MMJJ, Bulte JWM (2007) Molecular and cellular MR imaging. CRC Press, Boca RatonCrossRef
127.
Zurück zum Zitat Kellar KE, Fujii DK, Gunther WHH, Briley-Sæbø K, Bjørnerud A, Spiller M, Koenig SH (2000) NC 100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 11:488–494CrossRef Kellar KE, Fujii DK, Gunther WHH, Briley-Sæbø K, Bjørnerud A, Spiller M, Koenig SH (2000) NC 100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 11:488–494CrossRef
128.
Zurück zum Zitat Daldrup-Link HE, Kaiser A, Helbich T, Werner M, Bjørnerud A, Link TM, Rummeny EJ (2003) Macromolecular contrast medium (feruglose) versus small molecular contrast medium (gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad Radiol 10:1237–1246CrossRef Daldrup-Link HE, Kaiser A, Helbich T, Werner M, Bjørnerud A, Link TM, Rummeny EJ (2003) Macromolecular contrast medium (feruglose) versus small molecular contrast medium (gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad Radiol 10:1237–1246CrossRef
129.
Zurück zum Zitat Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39:394–405CrossRef Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39:394–405CrossRef
130.
Zurück zum Zitat Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRef Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRef
131.
Zurück zum Zitat Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RT (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512CrossRef Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RT (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512CrossRef
Metadaten
Titel
Magnetic Nanoparticles Used as Contrast Agents in MRI: Relaxometric Characterisation
verfasst von
Marc-André Fortin
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-52780-1_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.