Skip to main content
Erschienen in: Cognitive Neurodynamics 4/2018

26.02.2018 | Research Article

Maintenance of postsynaptic neuronal excitability by a positive feedback loop of postsynaptic BDNF expression

verfasst von: Lijie Hao, Zhuoqin Yang, Pulin Gong, Jinzhi Lei

Erschienen in: Cognitive Neurodynamics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experiments have demonstrated that in mice, the PVT strongly projects to the CeL and participates in the formation of fear memories by synaptic potentiation in the amygdala. Herein, we propose a mathematical model based on a positive feedback loop of BDNF expression and signaling to investigate PVT manipulation of synaptic potentiation. The model is validated by comparisons with experimental observations. We find that a high postsynaptic firing frequency after stimulation is induced by presynaptic \({\rm {Ca}^{2+}}\) when the rates of BDNF secretion from PVT and LA neurons to the CeL are above a threshold value. Moreover, the positive feedback of postsynaptic BDNF production is important for the maintenance of the high excitability of the \({\rm SOM^+}\) CeL neuron after stimulation. The model brings insight into the underlying mechanisms of PVT modulation of synaptic potentiation at LA-CeL synapses and provides a framework of understanding other similar processes associated with synaptic plasticity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Armony JL, Servan-Schreiber D, Cohen JD, LeDoux JE (1995) An anatomically constrained neural network model of fear conditioning. Behav Neurosci 109(2):246–257CrossRefPubMed Armony JL, Servan-Schreiber D, Cohen JD, LeDoux JE (1995) An anatomically constrained neural network model of fear conditioning. Behav Neurosci 109(2):246–257CrossRefPubMed
Zurück zum Zitat Armony JL, Quirk GJ, LeDoux JE (1998) Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. J Neurosci 18(7):2592–2601CrossRefPubMed Armony JL, Quirk GJ, LeDoux JE (1998) Differential effects of amygdala lesions on early and late plastic components of auditory cortex spike trains during fear conditioning. J Neurosci 18(7):2592–2601CrossRefPubMed
Zurück zum Zitat Balkenius C, MorÉn J (2001) Emotional learning: a computational model of the amygdala. Cybern Syst 32(6):611–636CrossRef Balkenius C, MorÉn J (2001) Emotional learning: a computational model of the amygdala. Cybern Syst 32(6):611–636CrossRef
Zurück zum Zitat Bollmann JH, Sakmann B, Borst JGG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289(5481):953–957CrossRefPubMed Bollmann JH, Sakmann B, Borst JGG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289(5481):953–957CrossRefPubMed
Zurück zum Zitat Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125CrossRefPubMed Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125CrossRefPubMed
Zurück zum Zitat Cho JH, Bayazitov IT, Meloni EG, Myers KM, Carlezon WA Jr, Zakharenko SS, Bolshakov VY (2011) Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala. Nat Neurosci 15(1):113–122CrossRefPubMedPubMedCentral Cho JH, Bayazitov IT, Meloni EG, Myers KM, Carlezon WA Jr, Zakharenko SS, Bolshakov VY (2011) Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala. Nat Neurosci 15(1):113–122CrossRefPubMedPubMedCentral
Zurück zum Zitat Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Müller C, Lüthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468(7321):277–282CrossRefPubMed Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Müller C, Lüthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468(7321):277–282CrossRefPubMed
Zurück zum Zitat Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41(2):143–210PubMed Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41(2):143–210PubMed
Zurück zum Zitat Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3(1):12–29CrossRefPubMed Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3(1):12–29CrossRefPubMed
Zurück zum Zitat Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge
Zurück zum Zitat Di Maio V, Ventriglia F, Santillo S (2016a) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10(4):315–325CrossRefPubMedPubMedCentral Di Maio V, Ventriglia F, Santillo S (2016a) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10(4):315–325CrossRefPubMedPubMedCentral
Zurück zum Zitat Di Maio V, Ventriglia F, Santillo S (2016b) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41(2):127–142CrossRefPubMed Di Maio V, Ventriglia F, Santillo S (2016b) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41(2):127–142CrossRefPubMed
Zurück zum Zitat Do-Monte FH, Quiñones Laracuente K, Quirk GJ (2015) A temporal shift in the circuits mediating retrieval of fear memory. Nature 519(7544):460–463CrossRefPubMedPubMedCentral Do-Monte FH, Quiñones Laracuente K, Quirk GJ (2015) A temporal shift in the circuits mediating retrieval of fear memory. Nature 519(7544):460–463CrossRefPubMedPubMedCentral
Zurück zum Zitat Edelmann E, Leßmann V, Brigadski T (2014) Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76:12–29CrossRef Edelmann E, Leßmann V, Brigadski T (2014) Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76:12–29CrossRef
Zurück zum Zitat Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19(5):1031–1047CrossRefPubMed Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19(5):1031–1047CrossRefPubMed
Zurück zum Zitat Golomb D, Yue C, Yaari Y (2006) Contribution of persistent Na\(^+\) current and M-type K\(^+\) current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J Neurophysiol 96(4):1912–1926CrossRefPubMed Golomb D, Yue C, Yaari Y (2006) Contribution of persistent Na\(^+\) current and M-type K\(^+\) current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J Neurophysiol 96(4):1912–1926CrossRefPubMed
Zurück zum Zitat Goosens KA, Hobin JA, Maren S (2003) Auditory-evoked spike firing in the lateral amygdala and pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40(5):1013–1022CrossRefPubMed Goosens KA, Hobin JA, Maren S (2003) Auditory-evoked spike firing in the lateral amygdala and pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40(5):1013–1022CrossRefPubMed
Zurück zum Zitat Graham BM, Milad MR (2011) Translational research in the neuroscience of fear extinction: implications for anxiety disorders. Am J Psychiatry 168(12):1255–1265CrossRefPubMedPubMedCentral Graham BM, Milad MR (2011) Translational research in the neuroscience of fear extinction: implications for anxiety disorders. Am J Psychiatry 168(12):1255–1265CrossRefPubMedPubMedCentral
Zurück zum Zitat Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Lüthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276CrossRefPubMedPubMedCentral Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Lüthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276CrossRefPubMedPubMedCentral
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefPubMedPubMedCentral Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefPubMedPubMedCentral
Zurück zum Zitat Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182CrossRefPubMed Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182CrossRefPubMed
Zurück zum Zitat Kim D, Paré D, Nair SS (2013a) Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J Neurosci 33(36):14,354–14,358CrossRef Kim D, Paré D, Nair SS (2013a) Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J Neurosci 33(36):14,354–14,358CrossRef
Zurück zum Zitat Kim D, Paré D, Nair SS (2013b) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20(8):421–430CrossRefPubMedPubMedCentral Kim D, Paré D, Nair SS (2013b) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20(8):421–430CrossRefPubMedPubMedCentral
Zurück zum Zitat Kirli KK, Ermentrout G, Cho RY (2014) Computational study of NMDA conductance and cortical oscillations in schizophrenia. Front Comput Neurosci 8:133CrossRefPubMedPubMedCentral Kirli KK, Ermentrout G, Cho RY (2014) Computational study of NMDA conductance and cortical oscillations in schizophrenia. Front Comput Neurosci 8:133CrossRefPubMedPubMedCentral
Zurück zum Zitat Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76(Part C):639–656CrossRefPubMed Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76(Part C):639–656CrossRefPubMed
Zurück zum Zitat LeDoux JE (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23(4–5):727–738CrossRefPubMed LeDoux JE (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23(4–5):727–738CrossRefPubMed
Zurück zum Zitat Lee HK (2006) Synpatic plasticity and phophorylation. Pharmacol Therapeut 112(3):810–832CrossRef Lee HK (2006) Synpatic plasticity and phophorylation. Pharmacol Therapeut 112(3):810–832CrossRef
Zurück zum Zitat Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J, Herry C, Lüthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335CrossRefPubMed Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J, Herry C, Lüthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335CrossRefPubMed
Zurück zum Zitat Li XF, Phillips R, LeDoux JE (1995) NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp Brain Res 105(1):87–100CrossRefPubMed Li XF, Phillips R, LeDoux JE (1995) NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp Brain Res 105(1):87–100CrossRefPubMed
Zurück zum Zitat Li G, Nair SS, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101(3):1629–1646CrossRefPubMed Li G, Nair SS, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101(3):1629–1646CrossRefPubMed
Zurück zum Zitat Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339CrossRefPubMedPubMedCentral Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339CrossRefPubMedPubMedCentral
Zurück zum Zitat Lisman JE, Zhabotinsky AM (2001) A model of synpatic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31(2):191–201CrossRefPubMed Lisman JE, Zhabotinsky AM (2001) A model of synpatic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31(2):191–201CrossRefPubMed
Zurück zum Zitat Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity, and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35CrossRefPubMed Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity, and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35CrossRefPubMed
Zurück zum Zitat Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302(5646):890–893CrossRefPubMed Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302(5646):890–893CrossRefPubMed
Zurück zum Zitat Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S, Nemoto T, Fukata M, Mm P (2009) Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 29(45):14,185–14,198CrossRef Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S, Nemoto T, Fukata M, Mm P (2009) Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 29(45):14,185–14,198CrossRef
Zurück zum Zitat McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22(1):295–318CrossRefPubMed McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22(1):295–318CrossRefPubMed
Zurück zum Zitat McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611CrossRefPubMed McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611CrossRefPubMed
Zurück zum Zitat Merrill MA, Chen Y, Stack S, Hall JW (2005) Activity-driven postsynaptic translocation of CaMKII. Trends Neurosci 26(12):645–653 Merrill MA, Chen Y, Stack S, Hall JW (2005) Activity-driven postsynaptic translocation of CaMKII. Trends Neurosci 26(12):645–653
Zurück zum Zitat Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):e1000,088CrossRef Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):e1000,088CrossRef
Zurück zum Zitat Ou LC, Gean PW (2006) Regulation of amygdala-dependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31(2):287–296CrossRefPubMed Ou LC, Gean PW (2006) Regulation of amygdala-dependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31(2):287–296CrossRefPubMed
Zurück zum Zitat Ou LC, Gean PW (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 72(2):350–358CrossRefPubMed Ou LC, Gean PW (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 72(2):350–358CrossRefPubMed
Zurück zum Zitat Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419–463CrossRefPubMedPubMedCentral Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419–463CrossRefPubMedPubMedCentral
Zurück zum Zitat Park H, Poo M (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23CrossRefPubMed Park H, Poo M (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23CrossRefPubMed
Zurück zum Zitat Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, Darvas M, Parada LF, Palmiter RD, He M, Huang ZJ, Li B (2015) The paraventricular thalamus controls a central amygdala fear circuit. Nature 519(7544):455–459CrossRefPubMedPubMedCentral Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, Darvas M, Parada LF, Palmiter RD, He M, Huang ZJ, Li B (2015) The paraventricular thalamus controls a central amygdala fear circuit. Nature 519(7544):455–459CrossRefPubMedPubMedCentral
Zurück zum Zitat Roozendaal B, McEwen B, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10(6):423–433CrossRefPubMed Roozendaal B, McEwen B, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10(6):423–433CrossRefPubMed
Zurück zum Zitat Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406(6798):889–893CrossRefPubMed Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406(6798):889–893CrossRefPubMed
Zurück zum Zitat Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35(1):169–191CrossRefPubMed Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35(1):169–191CrossRefPubMed
Zurück zum Zitat Sigurdsson T, Doyère V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Nature 52(1):215–227 Sigurdsson T, Doyère V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Nature 52(1):215–227
Zurück zum Zitat Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23(2):75–80CrossRefPubMed Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23(2):75–80CrossRefPubMed
Zurück zum Zitat Song I, Huganir RL (2002) Regulation of AMPA receptors during synpatic plasticity. Trends Neurosci 25(11):578–588CrossRefPubMed Song I, Huganir RL (2002) Regulation of AMPA receptors during synpatic plasticity. Trends Neurosci 25(11):578–588CrossRefPubMed
Zurück zum Zitat Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16(6):317–331CrossRefPubMed Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16(6):317–331CrossRefPubMed
Zurück zum Zitat Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94(2):719–723CrossRefPubMed Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94(2):719–723CrossRefPubMed
Zurück zum Zitat Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, Thompson KR, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471(7738):358–362CrossRefPubMedPubMedCentral Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, Thompson KR, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471(7738):358–362CrossRefPubMedPubMedCentral
Zurück zum Zitat Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9(5):224–237CrossRefPubMedPubMedCentral Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9(5):224–237CrossRefPubMedPubMedCentral
Zurück zum Zitat Vargas-Caballero M, Robinson HPC (2004) Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J Neurosci 24(27):6171–6180CrossRefPubMed Vargas-Caballero M, Robinson HPC (2004) Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J Neurosci 24(27):6171–6180CrossRefPubMed
Zurück zum Zitat Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19(21):9587–9603CrossRefPubMed Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19(21):9587–9603CrossRefPubMed
Zurück zum Zitat Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26(48):12,387–12,396CrossRef Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26(48):12,387–12,396CrossRef
Zurück zum Zitat Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV (2006) BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 9(8):1009–1018CrossRefPubMed Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV (2006) BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 9(8):1009–1018CrossRefPubMed
Zurück zum Zitat Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TVP, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22(5):1532–1540CrossRefPubMed Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TVP, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22(5):1532–1540CrossRefPubMed
Zurück zum Zitat Yiu AP, Hsiang HLL, Mercaldo V, Yan C, Richards B, Rashid AJ, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland PW, Josselyn SA (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83(3):722–735CrossRefPubMed Yiu AP, Hsiang HLL, Mercaldo V, Yan C, Richards B, Rashid AJ, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland PW, Josselyn SA (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83(3):722–735CrossRefPubMed
Zurück zum Zitat Zhong H, Sia GM, Sato TR, Gray NW, Mao T, Khuchua Z, Huganir RL, Svoboda K (2009) Subcellular dynamics of type II PKA in neurons. Neuron 62(3):363–374CrossRefPubMedPubMedCentral Zhong H, Sia GM, Sato TR, Gray NW, Mao T, Khuchua Z, Huganir RL, Svoboda K (2009) Subcellular dynamics of type II PKA in neurons. Neuron 62(3):363–374CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhou D, Li S, Zhang X, Cai D (2013) Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks. PLoS ONE 8(1):e53,508CrossRef Zhou D, Li S, Zhang X, Cai D (2013) Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks. PLoS ONE 8(1):e53,508CrossRef
Metadaten
Titel
Maintenance of postsynaptic neuronal excitability by a positive feedback loop of postsynaptic BDNF expression
verfasst von
Lijie Hao
Zhuoqin Yang
Pulin Gong
Jinzhi Lei
Publikationsdatum
26.02.2018
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 4/2018
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-018-9479-z

Weitere Artikel der Ausgabe 4/2018

Cognitive Neurodynamics 4/2018 Zur Ausgabe

Neuer Inhalt