Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

09.08.2020 | ORIGINAL ARTICLE

Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing—a survey

verfasst von: Ying Zhang, Sheng Yang, Yaoyao Fiona Zhao

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The laser-based powder bed fusion (LPBF) process is able to produce complex part geometries. The fast development of the LPBF process offers new opportunities for the industries. Most research done to date has focused on the modeling of the process, which shows that both part geometries and process parameters play an essential role in the result of end-product quality. The definition of the manufacturability of the LPBF is vague. In this review, the focus is set on the manufacturability of the metal-LPBF process. What manufacturability is in the LPBF process and how it is investigated so far are discussed. All process parameters and design constraints for LPBF processes are introduced. The relationship between process parameters and design constraints and how they affect the manufacturability are discussed as well. A detailed discussion on how other researchers evaluate manufacturability analysis of LPBF is conducted. Finally, the manufacturability of LPBF is defined, and future prospects on filling the research gaps on the manufacturability analysis of the LPBF are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357 Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357
2.
Zurück zum Zitat Sun S, Brandt M, Easton M (2017) 2 - Powder bed fusion processes: an overview. In: Laser additive manufacturing. Woodhead Publishing, pp 55–77 Sun S, Brandt M, Easton M (2017) 2 - Powder bed fusion processes: an overview. In: Laser additive manufacturing. Woodhead Publishing, pp 55–77
4.
Zurück zum Zitat Bhavar, V., et al. A review on powder bed fusion technology of metal additive manufacturing. In: 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014, September. 2014 Bhavar, V., et al. A review on powder bed fusion technology of metal additive manufacturing. In: 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014, September. 2014
5.
Zurück zum Zitat Beaman JJ et al (1997) SLS process modeling and control. In: Solid freeform fabrication: a new direction in manufacturing: with research and applications in thermal laser processing. Springer US, Boston, MA, pp 167–243 Beaman JJ et al (1997) SLS process modeling and control. In: Solid freeform fabrication: a new direction in manufacturing: with research and applications in thermal laser processing. Springer US, Boston, MA, pp 167–243
6.
Zurück zum Zitat Kruth J-P, Mercelis P, van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36 Kruth J-P, Mercelis P, van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36
7.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928 Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928
8.
Zurück zum Zitat Wohlers, T., Wohlers report. Wohlers Associates Inc, 2014 Wohlers, T., Wohlers report. Wohlers Associates Inc, 2014
9.
Zurück zum Zitat King W et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304 King W et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304
10.
Zurück zum Zitat Mullen L et al (2009) Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials: an Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 89(2):325–334 Mullen L et al (2009) Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials: an Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 89(2):325–334
11.
Zurück zum Zitat Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D (2016) High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater 30:345–356 Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D (2016) High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater 30:345–356
12.
Zurück zum Zitat Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: J Aero Engr 229 (11):2132–2147 Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: J Aero Engr 229 (11):2132–2147
13.
Zurück zum Zitat Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468 Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468
14.
Zurück zum Zitat Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284 Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284
15.
Zurück zum Zitat Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169 Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169
17.
Zurück zum Zitat Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for Additive Manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760 Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for Additive Manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760
19.
Zurück zum Zitat Rosen, D.W., Powder bed fusion processes. 2012, Georgia Institute of Technology Rosen, D.W., Powder bed fusion processes. 2012, Georgia Institute of Technology
20.
Zurück zum Zitat Ziemke MC, Spann MS (1993) Concurrent engineering’s roots in the World War II era. In: Concurrent engineering. Springer, pp 24–41 Ziemke MC, Spann MS (1993) Concurrent engineering’s roots in the World War II era. In: Concurrent engineering. Springer, pp 24–41
21.
Zurück zum Zitat Gupta SK, Nau DS (1995) Systematic approach to analysing the manufacturability of machined parts. Comput Aided Des 27(5):323–342MATH Gupta SK, Nau DS (1995) Systematic approach to analysing the manufacturability of machined parts. Comput Aided Des 27(5):323–342MATH
22.
Zurück zum Zitat Sing SL et al (2016) Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review. Biomedical Science and Engineering:1(1) Sing SL et al (2016) Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review. Biomedical Science and Engineering:1(1)
23.
Zurück zum Zitat Thomas, D., The development of design rules for selective laser melting. 2009, University of Wales Thomas, D., The development of design rules for selective laser melting. 2009, University of Wales
24.
Zurück zum Zitat Adam GA, Zimmer D (2015) On design for additive manufacturing: evaluating geometrical limitations. Rapid Prototyp J 21(6):662–670 Adam GA, Zimmer D (2015) On design for additive manufacturing: evaluating geometrical limitations. Rapid Prototyp J 21(6):662–670
25.
Zurück zum Zitat Diegel, O., et al., Tools for sustainable product design: additive manufacturing. 2010 Diegel, O., et al., Tools for sustainable product design: additive manufacturing. 2010
26.
Zurück zum Zitat Ameta G, Lipman R, Moylan S, Witherell P (2015) Investigating the role of geometric dimensioning and tolerancing in additive manufacturing. J Mech Des 137(11):111401 Ameta G, Lipman R, Moylan S, Witherell P (2015) Investigating the role of geometric dimensioning and tolerancing in additive manufacturing. J Mech Des 137(11):111401
27.
Zurück zum Zitat Booth JW, Alperovich J, Chawla P, Ma J, Reid TN, Ramani K (2017) The design for additive manufacturing worksheet. J Mech Des 139(10):100904 Booth JW, Alperovich J, Chawla P, Ma J, Reid TN, Ramani K (2017) The design for additive manufacturing worksheet. J Mech Des 139(10):100904
28.
Zurück zum Zitat Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125 Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125
29.
Zurück zum Zitat Sufiiarov VS, Popovich AA, Borisov EV, Polozov IA, Masaylo DV, Orlov AV (2017) The effect of layer thickness at selective laser melting. Procedia engineering 174:126–134 Sufiiarov VS, Popovich AA, Borisov EV, Polozov IA, Masaylo DV, Orlov AV (2017) The effect of layer thickness at selective laser melting. Procedia engineering 174:126–134
30.
Zurück zum Zitat Pegues, J., et al. Effect of specimen surface area size on fatigue strength of additively manufactured Ti-Al-4V parts. In: 28th International Solid Freeform Fabrication Symposium. 2017 Pegues, J., et al. Effect of specimen surface area size on fatigue strength of additively manufactured Ti-Al-4V parts. In: 28th International Solid Freeform Fabrication Symposium. 2017
31.
Zurück zum Zitat Pegues, J., et al. Effect of process parameter variation on microstructure and mechanical properties of additively manufactured Ti-6Al-4V. In: Solid freeform fabrication 2017: Proceedings of the 28th Annual International. 2017 Pegues, J., et al. Effect of process parameter variation on microstructure and mechanical properties of additively manufactured Ti-6Al-4V. In: Solid freeform fabrication 2017: Proceedings of the 28th Annual International. 2017
32.
Zurück zum Zitat Hanzl P, Zetek M, Bakša T, Kroupa T (2015) The influence of processing parameters on the mechanical properties of SLM parts. Procedia Engineering 100:1405–1413 Hanzl P, Zetek M, Bakša T, Kroupa T (2015) The influence of processing parameters on the mechanical properties of SLM parts. Procedia Engineering 100:1405–1413
33.
Zurück zum Zitat Krauss H, Zaeh M (2013) Investigations on manufacturability and process reliability of selective laser melting. Phys Procedia 41:815–822 Krauss H, Zaeh M (2013) Investigations on manufacturability and process reliability of selective laser melting. Phys Procedia 41:815–822
34.
Zurück zum Zitat Uddin, S.Z., et al. Laser powder bed fusion fabrication and characterization of crack-free aluminum alloy 6061 using in-process powder bed induction heating. In: Solid freeform fabrication 2017. 2017 Uddin, S.Z., et al. Laser powder bed fusion fabrication and characterization of crack-free aluminum alloy 6061 using in-process powder bed induction heating. In: Solid freeform fabrication 2017. 2017
35.
Zurück zum Zitat Campanelli SL et al (2014) Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials 7(6):4803–4822 Campanelli SL et al (2014) Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials 7(6):4803–4822
36.
Zurück zum Zitat Ponnusamy, P., et al. Mechanical performance of selective laser melted 17–4 PH stainless steel under compressive loading. In: Solid freeform fabrication 2017. 2017 Ponnusamy, P., et al. Mechanical performance of selective laser melted 17–4 PH stainless steel under compressive loading. In: Solid freeform fabrication 2017. 2017
37.
Zurück zum Zitat Qi, T., et al. Porosity development and cracking behavior of Al-Zn-Mg-Cu alloys fabricated by selective laser melting. In: Solid freeform fabrication 2017. 2017 Qi, T., et al. Porosity development and cracking behavior of Al-Zn-Mg-Cu alloys fabricated by selective laser melting. In: Solid freeform fabrication 2017. 2017
38.
Zurück zum Zitat Yadollahi, A., et al. Prediction of fatigue lives in additively manufactured alloys based on the crack-growth concept. In: Solid freeform fabrication 2017. 2017 Yadollahi, A., et al. Prediction of fatigue lives in additively manufactured alloys based on the crack-growth concept. In: Solid freeform fabrication 2017. 2017
39.
Zurück zum Zitat Aboulkhair NT et al (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing 1:77–86 Aboulkhair NT et al (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing 1:77–86
40.
Zurück zum Zitat Tradowsky U, White J, Ward RM, Read N, Reimers W, Attallah MM (2016) Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. Mater Des 105:212–222 Tradowsky U, White J, Ward RM, Read N, Reimers W, Attallah MM (2016) Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. Mater Des 105:212–222
41.
Zurück zum Zitat Haghshenas, M., et al. Small-scale mechanical properties of additively manufactured Ti-6Al-4V. In: Solid freeform fabrication 2017. 2017 Haghshenas, M., et al. Small-scale mechanical properties of additively manufactured Ti-6Al-4V. In: Solid freeform fabrication 2017. 2017
42.
Zurück zum Zitat Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders. Phys Procedia 12:264–270 Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders. Phys Procedia 12:264–270
43.
Zurück zum Zitat Ferrar B, Mullen L, Jones E, Stamp R, Sutcliffe CJ (2012) Gas flow effects on selective laser melting (SLM) manufacturing performance. J Mater Process Technol 212(2):355–364 Ferrar B, Mullen L, Jones E, Stamp R, Sutcliffe CJ (2012) Gas flow effects on selective laser melting (SLM) manufacturing performance. J Mater Process Technol 212(2):355–364
44.
Zurück zum Zitat Hoefer, M., N. Chen, and M. Frank. Automated manufacturability analysis for conceptual design in new product development. In: IIE Annual Conference. Proceedings. 2017. Institute of Industrial and Systems Engineers (IISE) Hoefer, M., N. Chen, and M. Frank. Automated manufacturability analysis for conceptual design in new product development. In: IIE Annual Conference. Proceedings. 2017. Institute of Industrial and Systems Engineers (IISE)
45.
Zurück zum Zitat Kerbrat O, Mognol P, Hascoët J-Y (2011) A new DFM approach to combine machining and additive manufacturing. Comput Ind 62(7):684–692 Kerbrat O, Mognol P, Hascoët J-Y (2011) A new DFM approach to combine machining and additive manufacturing. Comput Ind 62(7):684–692
46.
Zurück zum Zitat Jang D, Kim K, Jung J (2000) Voxel-based virtual multi-axis machining. Int J Adv Manuf Technol 16(10):709–713 Jang D, Kim K, Jung J (2000) Voxel-based virtual multi-axis machining. Int J Adv Manuf Technol 16(10):709–713
47.
Zurück zum Zitat Das S, Kanchanapiboon A (2011) A multi-criteria model for evaluating design for manufacturability. Int J Prod Res 49(4):1197–1217 Das S, Kanchanapiboon A (2011) A multi-criteria model for evaluating design for manufacturability. Int J Prod Res 49(4):1197–1217
48.
Zurück zum Zitat Shukor SA, Axinte DA (2009) Manufacturability analysis system: issues and future trends. Int J Prod Res 47(5):1369–1390 Shukor SA, Axinte DA (2009) Manufacturability analysis system: issues and future trends. Int J Prod Res 47(5):1369–1390
49.
Zurück zum Zitat Han J, Pratt M, Regli WC (2000) Manufacturing feature recognition from solid models: a status report. IEEE Trans Robot Autom 16(6):782–796 Han J, Pratt M, Regli WC (2000) Manufacturing feature recognition from solid models: a status report. IEEE Trans Robot Autom 16(6):782–796
50.
Zurück zum Zitat Li, Y. and M.C. Frank, Machinability analysis for 3-axis flat end milling. 2006 Li, Y. and M.C. Frank, Machinability analysis for 3-axis flat end milling. 2006
51.
Zurück zum Zitat Joshi S, Chang T-C (1988) Graph-based heuristics for recognition of machined features from a 3D solid model. Comput Aided Des 20(2):58–66MATH Joshi S, Chang T-C (1988) Graph-based heuristics for recognition of machined features from a 3D solid model. Comput Aided Des 20(2):58–66MATH
52.
Zurück zum Zitat Kailash S, Zhang Y, Fuh JY (2001) A volume decomposition approach to machining feature extraction of casting and forging components. Comput Aided Des 33(8):605–617 Kailash S, Zhang Y, Fuh JY (2001) A volume decomposition approach to machining feature extraction of casting and forging components. Comput Aided Des 33(8):605–617
53.
Zurück zum Zitat Kim, Y.S., Convex decomposition and solid geometric modeling. 1990 Kim, Y.S., Convex decomposition and solid geometric modeling. 1990
54.
Zurück zum Zitat Kim YS (1992) Recognition of form features using convex decomposition. Comput Aided Des 24(9):461–476MATH Kim YS (1992) Recognition of form features using convex decomposition. Comput Aided Des 24(9):461–476MATH
55.
Zurück zum Zitat Sakurai H, Dave P (1996) Volume decomposition and feature recognition, part II: curved objects. Comput Aided Des 28(6–7):519–537 Sakurai H, Dave P (1996) Volume decomposition and feature recognition, part II: curved objects. Comput Aided Des 28(6–7):519–537
56.
Zurück zum Zitat Sakurai, H. and C.-W. Chin, Definition and recognition of volume features for process planning. In: Manufacturing research and technology. 1994, Elsevier. p. 65–80 Sakurai, H. and C.-W. Chin, Definition and recognition of volume features for process planning. In: Manufacturing research and technology. 1994, Elsevier. p. 65–80
57.
Zurück zum Zitat Regli III, W.C., Geometric algorithms for recognition of features from solid models. 1995 Regli III, W.C., Geometric algorithms for recognition of features from solid models. 1995
58.
Zurück zum Zitat Han J, Requicha AA (1997) Integration of feature based design and feature recognition. Comput Aided Des 29(5):393–403 Han J, Requicha AA (1997) Integration of feature based design and feature recognition. Comput Aided Des 29(5):393–403
59.
Zurück zum Zitat Brooks, S.L., et al., Using STEP to integrate design features with manufacturing features. 1995. Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div Brooks, S.L., et al., Using STEP to integrate design features with manufacturing features. 1995. Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div
60.
Zurück zum Zitat Vandenbrande JH, Requicha AA (1993) Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Trans Pattern Anal Mach Intell 15(12):1269–1285 Vandenbrande JH, Requicha AA (1993) Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Trans Pattern Anal Mach Intell 15(12):1269–1285
61.
Zurück zum Zitat Meisel N, Williams C (2015) An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. J Mech Des 137(11):111406 Meisel N, Williams C (2015) An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. J Mech Des 137(11):111406
62.
Zurück zum Zitat Mani, M., P. Witherell, and H. Jee, Design rules for additive manufacturing: a categorization. 2017 (58110): p. V001T02A035 Mani, M., P. Witherell, and H. Jee, Design rules for additive manufacturing: a categorization. 2017 (58110): p. V001T02A035
63.
Zurück zum Zitat Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):044005 Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):044005
64.
Zurück zum Zitat Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801 Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801
65.
Zurück zum Zitat Mani, M., et al., Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. 2015: US Department of Commerce, National Institute of Standards and Technology Mani, M., et al., Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. 2015: US Department of Commerce, National Institute of Standards and Technology
66.
Zurück zum Zitat Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445 Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445
67.
Zurück zum Zitat Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360 Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360
68.
Zurück zum Zitat Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Manufacturing Innovation 5(1):2 Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Manufacturing Innovation 5(1):2
70.
Zurück zum Zitat Okaro IA, Jayasinghe S, Sutcliffe C, Black K, Paoletti P, Green PL (2019) Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing 27:42–53 Okaro IA, Jayasinghe S, Sutcliffe C, Black K, Paoletti P, Green PL (2019) Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing 27:42–53
71.
Zurück zum Zitat Yuan, B., et al. Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. In: Proceedings - 2019 IEEE winter conference on applications of computer vision, WACV 2019. 2019 Yuan, B., et al. Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting. In: Proceedings - 2019 IEEE winter conference on applications of computer vision, WACV 2019. 2019
72.
Zurück zum Zitat Yuan B et al (2018) Machine-learning-based monitoring of laser powder bed fusion. Advanced Materials Technologies 3(12) Yuan B et al (2018) Machine-learning-based monitoring of laser powder bed fusion. Advanced Materials Technologies 3(12)
73.
Zurück zum Zitat Wasmer K, le-Quang T, Meylan B, Shevchik SA (2019) In situ quality monitoring in AM using acoustic emission: a reinforcement learning approach. J Mater Eng Perform 28(2):666–672 Wasmer K, le-Quang T, Meylan B, Shevchik SA (2019) In situ quality monitoring in AM using acoustic emission: a reinforcement learning approach. J Mater Eng Perform 28(2):666–672
74.
Zurück zum Zitat Scime L, Beuth J (2018) A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing 24:273–286 Scime L, Beuth J (2018) A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing 24:273–286
75.
Zurück zum Zitat Scime L, Beuth J (2019) Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufacturing 25:151–165 Scime L, Beuth J (2019) Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufacturing 25:151–165
76.
Zurück zum Zitat Imani F et al (2018) Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging. Journal of Manufacturing Science and Engineering, Transactions of the ASME 140(10) Imani F et al (2018) Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging. Journal of Manufacturing Science and Engineering, Transactions of the ASME 140(10)
77.
Zurück zum Zitat Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing 21:517–528 Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing 21:517–528
78.
Zurück zum Zitat Zhang, Y. and A. Bernard. AM feature and knowledge based process planning for additive manufacturing in multiple parts production context. In: Proceedings of 25th Annual International Solid Freeform Fabrication Symposium. 2014 Zhang, Y. and A. Bernard. AM feature and knowledge based process planning for additive manufacturing in multiple parts production context. In: Proceedings of 25th Annual International Solid Freeform Fabrication Symposium. 2014
79.
Zurück zum Zitat Shi Y, Zhang Y, Baek S, de Backer W, Harik R (2018) Manufacturability analysis for additive manufacturing using a novel feature recognition technique. Computer-Aided Design and Applications 15(6):941–952 Shi Y, Zhang Y, Baek S, de Backer W, Harik R (2018) Manufacturability analysis for additive manufacturing using a novel feature recognition technique. Computer-Aided Design and Applications 15(6):941–952
80.
Zurück zum Zitat Kerbrat O, Mognol P, Hascoet JY (2010) Manufacturability analysis to combine additive and subtractive processes. Rapid Prototyp J 16(1):63–72 Kerbrat O, Mognol P, Hascoet JY (2010) Manufacturability analysis to combine additive and subtractive processes. Rapid Prototyp J 16(1):63–72
81.
Zurück zum Zitat Tedia, S. and C.B. Williams. Manufacturability analysis tool for additive manufacturing using voxel-based geometric modeling. In: 27th Annual International Solid Freeform Fabrication (SFF) Symposium. 2016 Tedia, S. and C.B. Williams. Manufacturability analysis tool for additive manufacturing using voxel-based geometric modeling. In: 27th Annual International Solid Freeform Fabrication (SFF) Symposium. 2016
82.
Zurück zum Zitat Telea, A. and A. Jalba. Voxel-based assessment of printability of 3D shapes. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. 2011. Springer Telea, A. and A. Jalba. Voxel-based assessment of printability of 3D shapes. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. 2011. Springer
83.
Zurück zum Zitat Nelaturi S, Kim W, Kurtoglu T (2015) Manufacturability feedback and model correction for additive manufacturing. J Manuf Sci Eng 137(2):021015 Nelaturi S, Kim W, Kurtoglu T (2015) Manufacturability feedback and model correction for additive manufacturing. J Manuf Sci Eng 137(2):021015
84.
Zurück zum Zitat Schmitt, W., et al. A 3D shape descriptor based on depth complexity and thickness histograms. In: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images. 2015. IEEE Schmitt, W., et al. A 3D shape descriptor based on depth complexity and thickness histograms. In: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images. 2015. IEEE
85.
Zurück zum Zitat Ulu, E., et al., Manufacturability oriented model correction and build direction optimization for additive manufacturing. Journal of Mehanical Design, 2019(in process) Ulu, E., et al., Manufacturability oriented model correction and build direction optimization for additive manufacturing. Journal of Mehanical Design, 2019(in process)
86.
Zurück zum Zitat Lu, T. Towards a fully automated 3D printability checker. In: 2016 IEEE International Conference on Industrial Technology (ICIT). 2016. IEEE Lu, T. Towards a fully automated 3D printability checker. In: 2016 IEEE International Conference on Industrial Technology (ICIT). 2016. IEEE
87.
Zurück zum Zitat Kim S et al (2019) A design for additive manufacturing ontology to support manufacturability. Analysis. 1 Kim S et al (2019) A design for additive manufacturing ontology to support manufacturability. Analysis. 1
88.
Zurück zum Zitat Chen, Y. and X. Xu. Manufactruability analysis of infeasible features in polygonal models for web-based rapid prototyping. In: 2010 International Conference on Manufacturing Automation. 2010. IEEE Chen, Y. and X. Xu. Manufactruability analysis of infeasible features in polygonal models for web-based rapid prototyping. In: 2010 International Conference on Manufacturing Automation. 2010. IEEE
89.
Zurück zum Zitat Cabiddu, D. and M. Attene, Epsilon-shapes: characterizing, detecting and thickening thin features in geometric models. 2017 Cabiddu, D. and M. Attene, Epsilon-shapes: characterizing, detecting and thickening thin features in geometric models. 2017
90.
Zurück zum Zitat Wang Y, Blache R, Zheng P, Xu X (2018) A knowledge management system to support design for additive manufacturing using Bayesian networks. J Mech Des 140(5):051701 Wang Y, Blache R, Zheng P, Xu X (2018) A knowledge management system to support design for additive manufacturing using Bayesian networks. J Mech Des 140(5):051701
91.
Zurück zum Zitat Mokhtarian H et al (2018) A conceptual design and modeling framework for integrated additive manufacturing. J Mech Des:140(8) Mokhtarian H et al (2018) A conceptual design and modeling framework for integrated additive manufacturing. J Mech Des:140(8)
92.
Zurück zum Zitat Manfredi D, Calignano F, Krishnan M, Canali R, Ambrosio E, Atzeni E (2013) From powders to dense metal parts: characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6(3):856–869 Manfredi D, Calignano F, Krishnan M, Canali R, Ambrosio E, Atzeni E (2013) From powders to dense metal parts: characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6(3):856–869
93.
Zurück zum Zitat Hauser, J.R. and D. Clausing, The house of quality. 1988 Hauser, J.R. and D. Clausing, The house of quality. 1988
94.
Zurück zum Zitat Park T, Kim K-J (1998) Determination of an optimal set of design requirements using house of quality. J Oper Manag 16(5):569–581 Park T, Kim K-J (1998) Determination of an optimal set of design requirements using house of quality. J Oper Manag 16(5):569–581
95.
Zurück zum Zitat Akao, Y., Quality function deployment. 2004 Akao, Y., Quality function deployment. 2004
96.
Zurück zum Zitat Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180 Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180
97.
Zurück zum Zitat Norton RL (2009) Cam design and manufacturing handbook. Industrial Press Inc Norton RL (2009) Cam design and manufacturing handbook. Industrial Press Inc
98.
Zurück zum Zitat Yang S, Zhao YF (2015) Additive manufacturing-enabled design theory and methodology: a critical review. Int J Adv Manuf Technol 80(1–4):327–342 Yang S, Zhao YF (2015) Additive manufacturing-enabled design theory and methodology: a critical review. Int J Adv Manuf Technol 80(1–4):327–342
99.
Zurück zum Zitat Sutton AT, Kriewall CS, Leu MC, Newkirk JW (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual and Physical Prototyping 12(1):3–29 Sutton AT, Kriewall CS, Leu MC, Newkirk JW (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual and Physical Prototyping 12(1):3–29
100.
Zurück zum Zitat Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864 Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864
101.
Zurück zum Zitat Brown B, Everhart W, Dinardo J (2016) Characterization of bulk to thin wall mechanical response transition in powder bed AM. Rapid Prototyp J 22(5):801–809 Brown B, Everhart W, Dinardo J (2016) Characterization of bulk to thin wall mechanical response transition in powder bed AM. Rapid Prototyp J 22(5):801–809
102.
Zurück zum Zitat Kruth J et al (2005) Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Laser 1:3D Kruth J et al (2005) Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Laser 1:3D
103.
Zurück zum Zitat Zeng, K., Optimization of support structures for selective laser melting. 2015 Zeng, K., Optimization of support structures for selective laser melting. 2015
104.
Zurück zum Zitat Gibson I, Rosen D, Stucker B (2014) Additive manufacturing technologies, vol 17. Springer, New York Gibson I, Rosen D, Stucker B (2014) Additive manufacturing technologies, vol 17. Springer, New York
105.
Zurück zum Zitat Calignano F (2014) Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater Des 64:203–213 Calignano F (2014) Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater Des 64:203–213
106.
Zurück zum Zitat Adam GA, Zimmer D (2014) Design for additive manufacturing—element transitions and aggregated structures. CIRP J Manuf Sci Technol 7(1):20–28 Adam GA, Zimmer D (2014) Design for additive manufacturing—element transitions and aggregated structures. CIRP J Manuf Sci Technol 7(1):20–28
107.
Zurück zum Zitat Hague R, Campbell I, Dickens P (2003) Implications on design of rapid manufacturing. Proc Inst Mech Eng C J Mech Eng Sci 217(1):25–30 Hague R, Campbell I, Dickens P (2003) Implications on design of rapid manufacturing. Proc Inst Mech Eng C J Mech Eng Sci 217(1):25–30
108.
Zurück zum Zitat Prüß H, Vietor T (2015) Design for fiber-reinforced additive manufacturing. J Mech Des 137(11):111409 Prüß H, Vietor T (2015) Design for fiber-reinforced additive manufacturing. J Mech Des 137(11):111409
109.
Zurück zum Zitat Das P et al (2017) Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing. Computer-Aided Design and Applications 14(sup1):1–13MathSciNet Das P et al (2017) Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing. Computer-Aided Design and Applications 14(sup1):1–13MathSciNet
110.
Zurück zum Zitat Zhang Y, Bernard A, Harik R, Karunakaran KP (2017) Build orientation optimization for multi-part production in additive manufacturing. J Intell Manuf 28(6):1393–1407 Zhang Y, Bernard A, Harik R, Karunakaran KP (2017) Build orientation optimization for multi-part production in additive manufacturing. J Intell Manuf 28(6):1393–1407
111.
Zurück zum Zitat Panesar A, Brackett D, Ashcroft I, Wildman R, Hague R (2015) Design framework for multifunctional additive manufacturing: placement and routing of three-dimensional printed circuit volumes. J Mech Des 137(11):111414 Panesar A, Brackett D, Ashcroft I, Wildman R, Hague R (2015) Design framework for multifunctional additive manufacturing: placement and routing of three-dimensional printed circuit volumes. J Mech Des 137(11):111414
112.
Zurück zum Zitat Alharbi N, Osman R, Wismeijer D (2016) Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 115(6):760–767 Alharbi N, Osman R, Wismeijer D (2016) Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 115(6):760–767
113.
Zurück zum Zitat Gorguluarslan RM, Park SI, Rosen DW, Choi SK (2015) A multilevel upscaling method for material characterization of additively manufactured part under uncertainties. J Mech Des 137(11):111408 Gorguluarslan RM, Park SI, Rosen DW, Choi SK (2015) A multilevel upscaling method for material characterization of additively manufactured part under uncertainties. J Mech Des 137(11):111408
114.
Zurück zum Zitat Zhao, D., M. Li, and Y. Liu, Self-supporting topology optimization for additive manufacturing. arXiv preprint arXiv:1708.07364, 2017 Zhao, D., M. Li, and Y. Liu, Self-supporting topology optimization for additive manufacturing. arXiv preprint arXiv:1708.07364, 2017
115.
Zurück zum Zitat Gaynor, A.T., Topology optimization algorithms for additive manufacturing. 2015 Gaynor, A.T., Topology optimization algorithms for additive manufacturing. 2015
116.
Zurück zum Zitat Gaynor AT, Guest JK (2016) Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 54(5):1157–1172MathSciNet Gaynor AT, Guest JK (2016) Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 54(5):1157–1172MathSciNet
117.
Zurück zum Zitat Patterson AE, Messimer SL, Farrington PA (2017) Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5(2):15 Patterson AE, Messimer SL, Farrington PA (2017) Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5(2):15
118.
Zurück zum Zitat Suri R (1988) A new perspective on manufacturing systems analysis. Design and Analysis of Integrated Manufacturing Systems:118–133 Suri R (1988) A new perspective on manufacturing systems analysis. Design and Analysis of Integrated Manufacturing Systems:118–133
119.
Zurück zum Zitat Chua CK, Wong CH, Yeong WY (2017) Chapter eight. Benchmarking for additive manufacturing. In: Chua CK, Wong CH, Yeong WY (eds) Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. Academic Press, pp 181–212 Chua CK, Wong CH, Yeong WY (2017) Chapter eight. Benchmarking for additive manufacturing. In: Chua CK, Wong CH, Yeong WY (eds) Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. Academic Press, pp 181–212
120.
Zurück zum Zitat Hudson J, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124(1):105–112 Hudson J, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124(1):105–112
121.
Zurück zum Zitat Chawla N, Deng X (2005) Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A 390(1):98–112 Chawla N, Deng X (2005) Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A 390(1):98–112
122.
Zurück zum Zitat Gupta SK, Regli WC, Das D, Nau DS (1997) Automated manufacturability analysis: a survey. Res Eng Des 9(3):168–190 Gupta SK, Regli WC, Das D, Nau DS (1997) Automated manufacturability analysis: a survey. Res Eng Des 9(3):168–190
123.
Zurück zum Zitat Dong G, Marleau-Finley J, Zhao YF (2019) Investigation of electrochemical post-processing procedure for Ti-6Al-4V lattice structure manufactured by direct metal laser sintering (DMLS). Int J Adv Manuf Technol 104(9):3401–3417 Dong G, Marleau-Finley J, Zhao YF (2019) Investigation of electrochemical post-processing procedure for Ti-6Al-4V lattice structure manufactured by direct metal laser sintering (DMLS). Int J Adv Manuf Technol 104(9):3401–3417
124.
Zurück zum Zitat Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of Aluminium alloys: additive manufacturing of Aluminium alloys using selective laser melting. Prog Mater Sci 106:100578 Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of Aluminium alloys: additive manufacturing of Aluminium alloys using selective laser melting. Prog Mater Sci 106:100578
127.
128.
Zurück zum Zitat Rehme, O. and C. Emmelmann, Reproducibilty for properties of selective laser melting. In: Third International WLT-Conference in Laser Manufacturing. 2005. Munich Rehme, O. and C. Emmelmann, Reproducibilty for properties of selective laser melting. In: Third International WLT-Conference in Laser Manufacturing. 2005. Munich
129.
Zurück zum Zitat Averyanova M, Bertrand P, Verquin B (2011) Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology: a detailed study on the influence of the initial properties of various martensitic stainless steel powders on the final microstructures and mechanical properties of parts manufactured using an optimized SLM process is reported in this paper. Virtual and Physical Prototyping 6(4):215–223 Averyanova M, Bertrand P, Verquin B (2011) Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology: a detailed study on the influence of the initial properties of various martensitic stainless steel powders on the final microstructures and mechanical properties of parts manufactured using an optimized SLM process is reported in this paper. Virtual and Physical Prototyping 6(4):215–223
Metadaten
Titel
Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing—a survey
verfasst von
Ying Zhang
Sheng Yang
Yaoyao Fiona Zhao
Publikationsdatum
09.08.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05825-6

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.