Skip to main content

2019 | OriginalPaper | Buchkapitel

19. Marine Polysaccharides: Biomedical and Tissue Engineering Applications

verfasst von : Shashiaknt Joshi, Shruthi Eshwar, Vipin Jain

Erschienen in: Marine-Derived Biomaterials for Tissue Engineering Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural polysaccharides of marine origin are gaining interest in biomedical applications. Seaweeds are most abundant source of polysaccharides, as alginates, agar and agarose as well as Carrageenans. Even cellulose and amylose have been extracted from the macroalgae. Chitin and chitosan are derived from the exoskeleton of marine crustaceans. Interdisciplinary fields involving various science and technology aspects such as cell sciences, biomaterials, medical sciences and engineering are referred to as tissue engineering, which is an upcoming new field intended to replace biological functions in human body. Tissue engineered scaffolds and artificial organs developed by such technique has replace injured parts in human body. Technological advancements have made it possible to obtain active ingredient in marine organisms by controlling the growth and isolation conditions. Present review has focused on progress in discovering and producing new applications of marine polysaccharides in biomedical and tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun J, Tan H (2013) Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 6:1285–1309CrossRef Sun J, Tan H (2013) Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 6:1285–1309CrossRef
2.
Zurück zum Zitat Venkatesan J, Nithya R, Sudha PN et al (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57CrossRef Venkatesan J, Nithya R, Sudha PN et al (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57CrossRef
3.
Zurück zum Zitat Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef
4.
Zurück zum Zitat Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233CrossRef Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233CrossRef
5.
Zurück zum Zitat Venkatesan J, Anil S, Kim SE (eds) (2017) Seaweed Polysaccharides: Isolation. Biological and Biomedical Applications, Elsevier, Massachusetts Venkatesan J, Anil S, Kim SE (eds) (2017) Seaweed Polysaccharides: Isolation. Biological and Biomedical Applications, Elsevier, Massachusetts
6.
Zurück zum Zitat Gong T, Heng BC, Lo EC et al (2016) Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells Int 2016:9204574CrossRef Gong T, Heng BC, Lo EC et al (2016) Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells Int 2016:9204574CrossRef
7.
Zurück zum Zitat Jazayeri HE, Fahmy MD, Razavi M et al (2016) Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 25:510–517CrossRef Jazayeri HE, Fahmy MD, Razavi M et al (2016) Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 25:510–517CrossRef
8.
Zurück zum Zitat Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316CrossRef Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316CrossRef
9.
Zurück zum Zitat Marsich E, Bellomo F, Turco G et al (2013) Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med 24:1799–1807CrossRef Marsich E, Bellomo F, Turco G et al (2013) Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med 24:1799–1807CrossRef
10.
Zurück zum Zitat Sajesh KM, Jayakumar R, Nair SV et al (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471CrossRef Sajesh KM, Jayakumar R, Nair SV et al (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471CrossRef
11.
Zurück zum Zitat Qiao P, Wang J, Xie Q et al (2013) Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater Sci Eng C Mater Biol Appl 33:4633–4639CrossRef Qiao P, Wang J, Xie Q et al (2013) Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater Sci Eng C Mater Biol Appl 33:4633–4639CrossRef
12.
Zurück zum Zitat Lee GS, Park JH, Shin US et al (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7:3178–3186CrossRef Lee GS, Park JH, Shin US et al (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7:3178–3186CrossRef
13.
Zurück zum Zitat Tang M, Chen W, Weir MD et al (2012) Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 8:3436–3445CrossRef Tang M, Chen W, Weir MD et al (2012) Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 8:3436–3445CrossRef
14.
Zurück zum Zitat Luo Y, Wu C, Lode A et al (2013) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:015005CrossRef Luo Y, Wu C, Lode A et al (2013) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:015005CrossRef
15.
Zurück zum Zitat Hamed S, Ayob FA, Alfatama M et al (2017) Enhancement of the immediate release of paracetamol from alginate beads. Int J Appl Pharm 9:47–51CrossRef Hamed S, Ayob FA, Alfatama M et al (2017) Enhancement of the immediate release of paracetamol from alginate beads. Int J Appl Pharm 9:47–51CrossRef
16.
Zurück zum Zitat Hariyadi DM, Hendradi E, Purwanti T et al (2014) Effect of crosslinking agent and polymer on the characteristics of ovalbumin-loaded alginate microspheres. Int J Pharm Pharm Sci 26:469–474 Hariyadi DM, Hendradi E, Purwanti T et al (2014) Effect of crosslinking agent and polymer on the characteristics of ovalbumin-loaded alginate microspheres. Int J Pharm Pharm Sci 26:469–474
17.
Zurück zum Zitat Pongjanyakul T, Puttipipatkhachorn S (2007) Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion. Eur J Pharm Biopharm 67:187–195CrossRef Pongjanyakul T, Puttipipatkhachorn S (2007) Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion. Eur J Pharm Biopharm 67:187–195CrossRef
18.
Zurück zum Zitat Abbah SA, Liu J, Lam RW et al (2012) In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 162:364–372CrossRef Abbah SA, Liu J, Lam RW et al (2012) In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 162:364–372CrossRef
19.
Zurück zum Zitat Chakraverty R (2012) Preparation and evaluation of sustained release microsphere of norfloxacin using sodium alginate. Int J Pharm Sci Res 3:293–299 Chakraverty R (2012) Preparation and evaluation of sustained release microsphere of norfloxacin using sodium alginate. Int J Pharm Sci Res 3:293–299
20.
Zurück zum Zitat Chen YQ, Sun DX, Liu J et al (2003) Preparation, properties and mechanism of inhomogeneous calcium alginate ion cross-linking gel microspheres. Chem Res Chinese Uni 19:85–88 Chen YQ, Sun DX, Liu J et al (2003) Preparation, properties and mechanism of inhomogeneous calcium alginate ion cross-linking gel microspheres. Chem Res Chinese Uni 19:85–88
21.
Zurück zum Zitat Boateng JS, Matthews KH, Stevens HN et al (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923CrossRef Boateng JS, Matthews KH, Stevens HN et al (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923CrossRef
22.
Zurück zum Zitat Peng CW, Lin HY, Wang HW et al (2012) The influence of operating parameters on the drug release and anti-bacterial performances of alginate wound dressings prepared by three-dimensional plotting. Mater Sci Eng C Mater Biol Appl 32:2491–2500CrossRef Peng CW, Lin HY, Wang HW et al (2012) The influence of operating parameters on the drug release and anti-bacterial performances of alginate wound dressings prepared by three-dimensional plotting. Mater Sci Eng C Mater Biol Appl 32:2491–2500CrossRef
23.
Zurück zum Zitat Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175CrossRef Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175CrossRef
24.
Zurück zum Zitat Agren MS (1999) Matrix metalloproteinases (MMPs) are required for re-epithelialization of cutaneous wounds. Arch Dermatol Res 291:583–590CrossRef Agren MS (1999) Matrix metalloproteinases (MMPs) are required for re-epithelialization of cutaneous wounds. Arch Dermatol Res 291:583–590CrossRef
25.
Zurück zum Zitat Prang P, Müller R, Eljaouhari A et al (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569 Prang P, Müller R, Eljaouhari A et al (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569
26.
Zurück zum Zitat Peter SJ, Lu L, Kim DJ et al (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213CrossRef Peter SJ, Lu L, Kim DJ et al (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213CrossRef
27.
Zurück zum Zitat Mourão PA (2004) Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des 10:967–981CrossRef Mourão PA (2004) Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des 10:967–981CrossRef
28.
Zurück zum Zitat Melo FR, Pereira MS, Foguel D et al (2004) Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J Biol Chem 279:20824–20835CrossRef Melo FR, Pereira MS, Foguel D et al (2004) Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J Biol Chem 279:20824–20835CrossRef
29.
Zurück zum Zitat Raghavendran HR, Srinivasan P, Rekha S (2011) Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int Immunopharmacol 11:157–163CrossRef Raghavendran HR, Srinivasan P, Rekha S (2011) Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int Immunopharmacol 11:157–163CrossRef
30.
Zurück zum Zitat Shibata H, Iimuro M, Uchiya N et al (2003) Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8:59–65CrossRef Shibata H, Iimuro M, Uchiya N et al (2003) Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8:59–65CrossRef
31.
Zurück zum Zitat Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D et al (2012) In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 9:307CrossRef Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D et al (2012) In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 9:307CrossRef
32.
Zurück zum Zitat Ngoan BT, Hanh TT, le Vien T et al (2015) Asterosaponins and glycosylated polyhydroxysteroids from the starfish Culcita novaeguineae and their cytotoxic activities. J Asian Nat Prod Res 17:1010–1017CrossRef Ngoan BT, Hanh TT, le Vien T et al (2015) Asterosaponins and glycosylated polyhydroxysteroids from the starfish Culcita novaeguineae and their cytotoxic activities. J Asian Nat Prod Res 17:1010–1017CrossRef
33.
Zurück zum Zitat Park HK, Kim IH, Kim J et al (2013) Induction of apoptosis and the regulation of ErbB signaling by laminarin in HT-29 human colon cancer cells. Int J Mol Med 32:291–295CrossRef Park HK, Kim IH, Kim J et al (2013) Induction of apoptosis and the regulation of ErbB signaling by laminarin in HT-29 human colon cancer cells. Int J Mol Med 32:291–295CrossRef
34.
Zurück zum Zitat Zhang QB, Yu PZ, Zhou GFet al(2003) Studies on antioxidant activities of fucoidan from Laminaria japonica. Chin Trad Herbal Drugs 34:824–826 Zhang QB, Yu PZ, Zhou GFet al(2003) Studies on antioxidant activities of fucoidan from Laminaria japonica. Chin Trad Herbal Drugs 34:824–826
35.
Zurück zum Zitat Rocha de Souza MC, Marques CT, Guerra Dore CM et al (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160CrossRef Rocha de Souza MC, Marques CT, Guerra Dore CM et al (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160CrossRef
36.
Zurück zum Zitat Zhao X, Xue CH, Cai YP et al (2005) The study of antioxidant activities of fucoidan from Laminaria japonica. High Tech Lett 11:91–94 Zhao X, Xue CH, Cai YP et al (2005) The study of antioxidant activities of fucoidan from Laminaria japonica. High Tech Lett 11:91–94
37.
Zurück zum Zitat Li LH, Xue CH, Xue Yet al(2006) The effects of fucoidans from Laminaria japonica on AAPH mediated oxidation of human low-density lipoprotein. Acta Oceanol Sin 25:124–130 Li LH, Xue CH, Xue Yet al(2006) The effects of fucoidans from Laminaria japonica on AAPH mediated oxidation of human low-density lipoprotein. Acta Oceanol Sin 25:124–130
38.
Zurück zum Zitat Wang J, Zhang Q, Zhang Z et al (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132CrossRef Wang J, Zhang Q, Zhang Z et al (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132CrossRef
39.
Zurück zum Zitat Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675CrossRef Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675CrossRef
40.
Zurück zum Zitat Park SJ, Lee KW, Lim DS et al (2012) The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev 21:2204–2211CrossRef Park SJ, Lee KW, Lim DS et al (2012) The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev 21:2204–2211CrossRef
41.
Zurück zum Zitat Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718CrossRef Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718CrossRef
42.
Zurück zum Zitat Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188CrossRef Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188CrossRef
43.
Zurück zum Zitat Fukuta K, Nakamura T (2008) Induction of hepatocyte growth factor by fucoidan and fucoidan-derived oligosaccharides. J Pharm Pharmacol 60:499–503CrossRef Fukuta K, Nakamura T (2008) Induction of hepatocyte growth factor by fucoidan and fucoidan-derived oligosaccharides. J Pharm Pharmacol 60:499–503CrossRef
44.
Zurück zum Zitat Vale PR, Losordo DW, Symes JF et al (2001) Growth factors for therapeutic angiogenesis in Cardio-vascular diseases. Rev Esp Cariol 54:1210–1214CrossRef Vale PR, Losordo DW, Symes JF et al (2001) Growth factors for therapeutic angiogenesis in Cardio-vascular diseases. Rev Esp Cariol 54:1210–1214CrossRef
45.
Zurück zum Zitat Luyt CE, Meddahi-Pellé A, Ho-Tin-Noe B et al (2003) Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharmacol Exp Ther 305:24–30CrossRef Luyt CE, Meddahi-Pellé A, Ho-Tin-Noe B et al (2003) Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharmacol Exp Ther 305:24–30CrossRef
46.
Zurück zum Zitat Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627CrossRef Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627CrossRef
47.
Zurück zum Zitat Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef
48.
Zurück zum Zitat Fedorov SN, Ermakova SP, Zvyagintseva TN et al (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901CrossRef Fedorov SN, Ermakova SP, Zvyagintseva TN et al (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901CrossRef
49.
Zurück zum Zitat Prajapati VD, Maheriya PM, Jani GK et al (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112CrossRef Prajapati VD, Maheriya PM, Jani GK et al (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112CrossRef
50.
Zurück zum Zitat Mihaila SM, Gaharwar AK, Reis RL et al (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2:895–907CrossRef Mihaila SM, Gaharwar AK, Reis RL et al (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2:895–907CrossRef
51.
Zurück zum Zitat Li L, Ni R, Shao Y et al (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11CrossRef Li L, Ni R, Shao Y et al (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11CrossRef
52.
Zurück zum Zitat Lokhande G, Carrow JK, Thakur T et al (2018) Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 70:35–47CrossRef Lokhande G, Carrow JK, Thakur T et al (2018) Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 70:35–47CrossRef
53.
Zurück zum Zitat Esmaeili C, Heng LY, Ling TL (2015) Nile Blue chromoionophore-doped kappa-carrageenan for a novel reflectometric urea biosensor. Sensor Actuat B-Chem 221:969–977CrossRef Esmaeili C, Heng LY, Ling TL (2015) Nile Blue chromoionophore-doped kappa-carrageenan for a novel reflectometric urea biosensor. Sensor Actuat B-Chem 221:969–977CrossRef
54.
Zurück zum Zitat Liang W, Mao X, Peng X et al (2014) Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 101:776–785CrossRef Liang W, Mao X, Peng X et al (2014) Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 101:776–785CrossRef
55.
Zurück zum Zitat Morelli A, Puppi D, Chiellini F (2017) Perspectives on Biomedical Applications of Ulvan. In: Venkatesan J, Anil S, Kim SE (eds) Seaweed Polysaccharides. Elsevier, Massachusetts, pp 305–330CrossRef Morelli A, Puppi D, Chiellini F (2017) Perspectives on Biomedical Applications of Ulvan. In: Venkatesan J, Anil S, Kim SE (eds) Seaweed Polysaccharides. Elsevier, Massachusetts, pp 305–330CrossRef
56.
Zurück zum Zitat Sudha PN (ed) (2017) Industrial applications of marine biopolymers. CRC Press, New York Sudha PN (ed) (2017) Industrial applications of marine biopolymers. CRC Press, New York
57.
Zurück zum Zitat Dutta PK (ed) (2016) Chitin and Chitosan for Regenerative Medicine. Springer Publishing, India, Springer Series on Polymer and Composite Materials Dutta PK (ed) (2016) Chitin and Chitosan for Regenerative Medicine. Springer Publishing, India, Springer Series on Polymer and Composite Materials
58.
Zurück zum Zitat Dongre RS (2017) Marine polysaccharides in medicine. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. IntechOpen, London, pp 181–206 Dongre RS (2017) Marine polysaccharides in medicine. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. IntechOpen, London, pp 181–206
59.
Zurück zum Zitat d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical application: chemical modification approach. Molecules 13:2069–2106CrossRef d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical application: chemical modification approach. Molecules 13:2069–2106CrossRef
61.
Zurück zum Zitat Aljawish A, Chevalot I, Jasniewski J et al (2015) Enzymatic synthesis of chitosan derivatives and their potential applications. J Mol Catal B Enzym 112:25–39CrossRef Aljawish A, Chevalot I, Jasniewski J et al (2015) Enzymatic synthesis of chitosan derivatives and their potential applications. J Mol Catal B Enzym 112:25–39CrossRef
62.
Zurück zum Zitat Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. In: Amber Jennings J, Bumgardner JD (eds) Chitosan Based Biomaterials, vol 1. Woodhead Publishing, Cambridge, pp 3–30CrossRef Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. In: Amber Jennings J, Bumgardner JD (eds) Chitosan Based Biomaterials, vol 1. Woodhead Publishing, Cambridge, pp 3–30CrossRef
63.
Zurück zum Zitat Gierszewska M, Ostrowska-Czubenko J (2016) Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr Polym 153:501–511CrossRef Gierszewska M, Ostrowska-Czubenko J (2016) Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr Polym 153:501–511CrossRef
64.
Zurück zum Zitat Cao Z, Shen Z, Luo X et al (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr Polym 166:320–328CrossRef Cao Z, Shen Z, Luo X et al (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr Polym 166:320–328CrossRef
65.
Zurück zum Zitat Agarwal T, Narayan R, Maji S et al (2016) Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int J Biol Macromol 93B:1499–1506CrossRef Agarwal T, Narayan R, Maji S et al (2016) Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int J Biol Macromol 93B:1499–1506CrossRef
66.
Zurück zum Zitat Dutta PK, Dutta J, Tripathi VS (2004) Chitin, chitosan: chemistry, properties and applications. J Sci Ind Res India 63:20–31 Dutta PK, Dutta J, Tripathi VS (2004) Chitin, chitosan: chemistry, properties and applications. J Sci Ind Res India 63:20–31
67.
Zurück zum Zitat Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109CrossRef Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109CrossRef
68.
Zurück zum Zitat Bakshi PS, Selvakumar D, Kadirvelu K et al (2018) Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. React Funct Polym 124:149–155CrossRef Bakshi PS, Selvakumar D, Kadirvelu K et al (2018) Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. React Funct Polym 124:149–155CrossRef
69.
Zurück zum Zitat Ignatova M, Manolova N, Rashkov I (2007) Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidine) prepared by electrospinning. Eur Polym J 43:1112–1122CrossRef Ignatova M, Manolova N, Rashkov I (2007) Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidine) prepared by electrospinning. Eur Polym J 43:1112–1122CrossRef
70.
Zurück zum Zitat Tsao CT, Chang CH, Lin YY et al (2011) Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 84:812–819CrossRef Tsao CT, Chang CH, Lin YY et al (2011) Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 84:812–819CrossRef
71.
Zurück zum Zitat Dong Y, Liu HZ, Xu L et al (2010) A novel CHS/ALG bilayer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chinese Chem Lett 21:1011–1014CrossRef Dong Y, Liu HZ, Xu L et al (2010) A novel CHS/ALG bilayer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chinese Chem Lett 21:1011–1014CrossRef
72.
Zurück zum Zitat Gao Y, Cranston R (2008) Recent advances in antimicrobial treatment of textiles. Textile Res J 78:60–72CrossRef Gao Y, Cranston R (2008) Recent advances in antimicrobial treatment of textiles. Textile Res J 78:60–72CrossRef
73.
Zurück zum Zitat Vongchan P, Sajomsanf W, Kasinrerk W et al (2003) Anticoagulant activities of chitosan polysulfate synthesized from marine crab shells by semi-heterogeneous conditions. Sci Asia 29:115–120CrossRef Vongchan P, Sajomsanf W, Kasinrerk W et al (2003) Anticoagulant activities of chitosan polysulfate synthesized from marine crab shells by semi-heterogeneous conditions. Sci Asia 29:115–120CrossRef
74.
Zurück zum Zitat Azuma K, Osaki T, Minami S et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6:33–49CrossRef Azuma K, Osaki T, Minami S et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6:33–49CrossRef
75.
Zurück zum Zitat Karimi AR, Tarighatjoo M, Nikravesh G (2017) 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior. Int J Biol Macromol 105:1088–1095CrossRef Karimi AR, Tarighatjoo M, Nikravesh G (2017) 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior. Int J Biol Macromol 105:1088–1095CrossRef
76.
Zurück zum Zitat Thanyacharoen T, Chuysinuan P, Techasakul S et al (2018) Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. Int J Biol Macromol 107A:363–370CrossRef Thanyacharoen T, Chuysinuan P, Techasakul S et al (2018) Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. Int J Biol Macromol 107A:363–370CrossRef
77.
Zurück zum Zitat Burkatovskaya M, Castano AP, Demidova-Rice TN et al (2008) Effect of chitosan acetate bandage on wound healing in infected and non infected wounds in mice. Wound Repair Regen 16:425–431CrossRef Burkatovskaya M, Castano AP, Demidova-Rice TN et al (2008) Effect of chitosan acetate bandage on wound healing in infected and non infected wounds in mice. Wound Repair Regen 16:425–431CrossRef
78.
Zurück zum Zitat Mori T, Okumura M, Matsuura M et al (1997) Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18:947–951CrossRef Mori T, Okumura M, Matsuura M et al (1997) Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18:947–951CrossRef
79.
Zurück zum Zitat Khan TA, Peh KK (2003) A preliminary investigation of chitosan film as dressing for punch biopsy wounds in rats. J Pharm Pharm Sci 6:20–26 Khan TA, Peh KK (2003) A preliminary investigation of chitosan film as dressing for punch biopsy wounds in rats. J Pharm Pharm Sci 6:20–26
80.
Zurück zum Zitat Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120:111–121CrossRef Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120:111–121CrossRef
81.
Zurück zum Zitat Thein-Han WW, Misra RD (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef Thein-Han WW, Misra RD (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef
82.
Zurück zum Zitat Li JJ, Dou Y, Yang J et al (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mat Sci Eng C—Bio S 29:1207–1215CrossRef Li JJ, Dou Y, Yang J et al (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mat Sci Eng C—Bio S 29:1207–1215CrossRef
83.
Zurück zum Zitat Pinho ED, Martins A, Araújo JV et al (2009) Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomater 5:1104–1114CrossRef Pinho ED, Martins A, Araújo JV et al (2009) Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomater 5:1104–1114CrossRef
84.
Zurück zum Zitat Niu X, Feng Q, Wang M et al (2009) In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym Degrad Stabil 94:176–182CrossRef Niu X, Feng Q, Wang M et al (2009) In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym Degrad Stabil 94:176–182CrossRef
85.
Zurück zum Zitat Sendemir-Urkmez A, Jamison RD (2007) The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res A 81:624–633CrossRef Sendemir-Urkmez A, Jamison RD (2007) The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res A 81:624–633CrossRef
86.
Zurück zum Zitat Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polym J 45:141–148CrossRef Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polym J 45:141–148CrossRef
87.
Zurück zum Zitat Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27:4894–4903CrossRef Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27:4894–4903CrossRef
88.
Zurück zum Zitat Sano H, Shibasaki K, Matsukubo T et al (2003) Effect of chitosan rinsing on reduction of dental plaque formation. Bull Tokyo Dent Coll 44:9–16CrossRef Sano H, Shibasaki K, Matsukubo T et al (2003) Effect of chitosan rinsing on reduction of dental plaque formation. Bull Tokyo Dent Coll 44:9–16CrossRef
89.
Zurück zum Zitat Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15CrossRef Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15CrossRef
90.
Zurück zum Zitat Mohire NC, Yadav AV (2010) Chitosan-based polyherbal toothpaste: as novel oral hygiene product. Indian J Dent Res 21:380–384CrossRef Mohire NC, Yadav AV (2010) Chitosan-based polyherbal toothpaste: as novel oral hygiene product. Indian J Dent Res 21:380–384CrossRef
91.
Zurück zum Zitat Mathew SP, Pai VS, Usha G et al (2017) Comparative evaluation of smear layer removal by chitosan and ethylenediaminetetraacetic acid when used as irrigant and its effect on root dentine: An in vitro atomic force microscopic and energy-dispersive X-ray analysis. J Conserv Dent 20:245–250CrossRef Mathew SP, Pai VS, Usha G et al (2017) Comparative evaluation of smear layer removal by chitosan and ethylenediaminetetraacetic acid when used as irrigant and its effect on root dentine: An in vitro atomic force microscopic and energy-dispersive X-ray analysis. J Conserv Dent 20:245–250CrossRef
92.
Zurück zum Zitat Ganss C, von Hinckeldey J, Tolle A et al (2012) Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent 40:1036–1043CrossRef Ganss C, von Hinckeldey J, Tolle A et al (2012) Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent 40:1036–1043CrossRef
93.
Zurück zum Zitat Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRef Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRef
94.
Zurück zum Zitat Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720CrossRef Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720CrossRef
95.
Zurück zum Zitat Kim JS, Shin DH (2013) Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod 38:36–42CrossRef Kim JS, Shin DH (2013) Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod 38:36–42CrossRef
96.
Zurück zum Zitat EVEREST BIOTECH (2018) Biopolymer coated gingival retraction cord and the process thereof. Indian Patent pending EVEREST BIOTECH (2018) Biopolymer coated gingival retraction cord and the process thereof. Indian Patent pending
97.
Zurück zum Zitat Li F, Liu X, Zhao S et al (2014) Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dent Mater 30:172–181CrossRef Li F, Liu X, Zhao S et al (2014) Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dent Mater 30:172–181CrossRef
98.
Zurück zum Zitat Chen Z, Cao S, Wang H et al (2015) Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 10:e0116553CrossRef Chen Z, Cao S, Wang H et al (2015) Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 10:e0116553CrossRef
99.
Zurück zum Zitat Shrestha A, Shi Z, Neoh KG et al (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 36:1030–1035CrossRef Shrestha A, Shi Z, Neoh KG et al (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 36:1030–1035CrossRef
100.
Zurück zum Zitat Shrestha A, Hamblin MR, Kishen A (2012) Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob Agents Chemother 56:4876–4884CrossRef Shrestha A, Hamblin MR, Kishen A (2012) Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob Agents Chemother 56:4876–4884CrossRef
101.
Zurück zum Zitat Silva PV, Guedes DF, Nakadi FV et al (2013) Chitosan: a new solution for removal of smear layer after root canal instrumentation. Int Endod J 46:332–338CrossRef Silva PV, Guedes DF, Nakadi FV et al (2013) Chitosan: a new solution for removal of smear layer after root canal instrumentation. Int Endod J 46:332–338CrossRef
102.
Zurück zum Zitat Shrestha A, Hamblin MR, Kishen A (2014) Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine 10:491–501CrossRef Shrestha A, Hamblin MR, Kishen A (2014) Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine 10:491–501CrossRef
103.
Zurück zum Zitat Shrestha A, Kishen A (2014) Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J Endod 40:566–570CrossRef Shrestha A, Kishen A (2014) Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J Endod 40:566–570CrossRef
104.
Zurück zum Zitat Shrestha A, Cordova M, Kishen A (2015) Photoactivated polycationic bioactive chitosan nanoparticles inactivate bacterial endotoxins. J Endod 41:686–691CrossRef Shrestha A, Cordova M, Kishen A (2015) Photoactivated polycationic bioactive chitosan nanoparticles inactivate bacterial endotoxins. J Endod 41:686–691CrossRef
105.
Zurück zum Zitat Shin SY, Park HN, Kim KH et al (2005) Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 76:1778–1784CrossRef Shin SY, Park HN, Kim KH et al (2005) Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 76:1778–1784CrossRef
106.
Zurück zum Zitat Arpornmaeklong P, Suwatwirote N, Pripatnanont P et al (2007) Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Int J Oral Maxillofac Surg 36:328–337CrossRef Arpornmaeklong P, Suwatwirote N, Pripatnanont P et al (2007) Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Int J Oral Maxillofac Surg 36:328–337CrossRef
107.
Zurück zum Zitat Malmquist JP, Clemens SC, Oien HJ et al (2008) Hemostasis of oral surgery wounds with the HemCon Dental Dressing. J Oral Maxillofac Surg 66:1177–1183CrossRef Malmquist JP, Clemens SC, Oien HJ et al (2008) Hemostasis of oral surgery wounds with the HemCon Dental Dressing. J Oral Maxillofac Surg 66:1177–1183CrossRef
108.
Zurück zum Zitat Azargoon H, Williams BJ, Solomon ES et al (2011) Assessment of hemostatic efficacy and osseous wound healing using HemCon dental dressing. J Endod 37:807–811CrossRef Azargoon H, Williams BJ, Solomon ES et al (2011) Assessment of hemostatic efficacy and osseous wound healing using HemCon dental dressing. J Endod 37:807–811CrossRef
109.
Zurück zum Zitat Kale TP, Singh AK, Kotrashetti SM et al (2012) Effectiveness of Hemcon Dental Dressing versus Conventional Method of Haemostasis in 40 Patients on Oral Antiplatelet Drugs. Sultan Qaboos Univ Med J 12:330–335CrossRef Kale TP, Singh AK, Kotrashetti SM et al (2012) Effectiveness of Hemcon Dental Dressing versus Conventional Method of Haemostasis in 40 Patients on Oral Antiplatelet Drugs. Sultan Qaboos Univ Med J 12:330–335CrossRef
110.
Zurück zum Zitat Li X, Wang X, Zhao T et al (2014) Guided bone regeneration using chitosan-collagen membranes in dog dehiscence-type defect model. J Oral Maxillofac Surg 72:304.e1–304.e14CrossRef Li X, Wang X, Zhao T et al (2014) Guided bone regeneration using chitosan-collagen membranes in dog dehiscence-type defect model. J Oral Maxillofac Surg 72:304.e1–304.e14CrossRef
111.
Zurück zum Zitat Lee YM, Park YJ, Lee SJ et al (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424CrossRef Lee YM, Park YJ, Lee SJ et al (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424CrossRef
112.
Zurück zum Zitat Lee YM, Park YJ, Lee SJ et al (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71:410–417CrossRef Lee YM, Park YJ, Lee SJ et al (2000) Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 71:410–417CrossRef
113.
Zurück zum Zitat Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503CrossRef Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503CrossRef
114.
Zurück zum Zitat Bae K, Jun EJ, Lee SM et al (2006) Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clin Oral Investig 10:102–107CrossRef Bae K, Jun EJ, Lee SM et al (2006) Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clin Oral Investig 10:102–107CrossRef
115.
Zurück zum Zitat Akman AC, Seda Tiğli R, Gümüşderelioğlu M et al (2010) Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells. Artif Organs 34:65–74CrossRef Akman AC, Seda Tiğli R, Gümüşderelioğlu M et al (2010) Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells. Artif Organs 34:65–74CrossRef
116.
Zurück zum Zitat Peng L, Cheng X, Zhuo R, Lan J, Wang Y, Shi B, Li S (2009) Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. J Biomed Mater Res A 90:564–576CrossRef Peng L, Cheng X, Zhuo R, Lan J, Wang Y, Shi B, Li S (2009) Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. J Biomed Mater Res A 90:564–576CrossRef
117.
Zurück zum Zitat Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet derived growth factor releasing chitosan/ coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522CrossRef Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet derived growth factor releasing chitosan/ coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522CrossRef
118.
Zurück zum Zitat Akman AC, Tiğli RS, Gümüşderelioğlu M et al (2010) bFGF-loaded HA-chitosan: a promising scaffold for periodontal tissue engineering. J Biomed Mater Res A 92:953–962 Akman AC, Tiğli RS, Gümüşderelioğlu M et al (2010) bFGF-loaded HA-chitosan: a promising scaffold for periodontal tissue engineering. J Biomed Mater Res A 92:953–962
119.
Zurück zum Zitat Liao F, Chen Y, Li Z et al (2010) A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 21:489–496CrossRef Liao F, Chen Y, Li Z et al (2010) A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 21:489–496CrossRef
120.
Zurück zum Zitat Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRef Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRef
121.
Zurück zum Zitat Zhang Y, Cheng X, Wang J et al (2006) Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344:362–369CrossRef Zhang Y, Cheng X, Wang J et al (2006) Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344:362–369CrossRef
Metadaten
Titel
Marine Polysaccharides: Biomedical and Tissue Engineering Applications
verfasst von
Shashiaknt Joshi
Shruthi Eshwar
Vipin Jain
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.