Skip to main content

2022 | OriginalPaper | Buchkapitel

8. Mass Production

verfasst von : Sanjay Kumar

Erschienen in: Additive Manufacturing Solutions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

AM system is not expected to fulfill the requirement of mass production. What are the conditions at which mass production can be realized in an AM system—the chapter answers the question along with whether a mass production realized in an AM system can be technically called mass production.
Answer of one question related to mass production in an AM system is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wiese, M., Thiede, S., & Herrmann, C. (2020). Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. Additive Manufacturing, 36, 101582.CrossRef Wiese, M., Thiede, S., & Herrmann, C. (2020). Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. Additive Manufacturing, 36, 101582.CrossRef
2.
Zurück zum Zitat Wiese, M., Leiden, A., Rogall, C., et al. (2021). Modeling energy and resource use in additive manufacturing of automotive series parts with multi-jet fusion and selective laser sintering. Procedia CIRP, 98, 358–363.CrossRef Wiese, M., Leiden, A., Rogall, C., et al. (2021). Modeling energy and resource use in additive manufacturing of automotive series parts with multi-jet fusion and selective laser sintering. Procedia CIRP, 98, 358–363.CrossRef
3.
Zurück zum Zitat Deradjat, D., & Minshall, T. (2018). Decision trees for implementing rapid manufacturing for mass customisation. CIRP Journal of Manufacturing Science and Technology, 23, 156–171.CrossRef Deradjat, D., & Minshall, T. (2018). Decision trees for implementing rapid manufacturing for mass customisation. CIRP Journal of Manufacturing Science and Technology, 23, 156–171.CrossRef
4.
Zurück zum Zitat Roy, N. K., Behera, D., Dibua, O. G., et al. (2019). A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsystems & Nanoengineering, 5, 64.CrossRef Roy, N. K., Behera, D., Dibua, O. G., et al. (2019). A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsystems & Nanoengineering, 5, 64.CrossRef
5.
Zurück zum Zitat Lambert, PM., Campaigne, EA., & Williams, CB. (2013). Design considerations for mask projection microstereolithography systems. In SFF Proceedings (pp. 111–130). Lambert, PM., Campaigne, EA., & Williams, CB. (2013). Design considerations for mask projection microstereolithography systems. In SFF Proceedings (pp. 111–130).
6.
Zurück zum Zitat Tenbrock, C., Kelliger, T., Praetzsch, N., et al. (2021). Effect of laser-plume interaction on part quality in multi-scanner laser powder bed fusion. Additive Manufacturing, 38, 101810.CrossRef Tenbrock, C., Kelliger, T., Praetzsch, N., et al. (2021). Effect of laser-plume interaction on part quality in multi-scanner laser powder bed fusion. Additive Manufacturing, 38, 101810.CrossRef
7.
Zurück zum Zitat Zhang, W., Hou, W., Deike, L., & Arnold, C. B. (2020). Using a dual-laser system to create periodic coalescence in laser powder bed fusion. Acta Materialia, 201, 14–22.CrossRef Zhang, W., Hou, W., Deike, L., & Arnold, C. B. (2020). Using a dual-laser system to create periodic coalescence in laser powder bed fusion. Acta Materialia, 201, 14–22.CrossRef
8.
Zurück zum Zitat Sow, M. C., Terris, T. D., Castelnau, O., et al. (2020). Influence of beam diameter on laser powder bed fusion (L-PBF) process. Additive Manufacturing, 36, 101532.CrossRef Sow, M. C., Terris, T. D., Castelnau, O., et al. (2020). Influence of beam diameter on laser powder bed fusion (L-PBF) process. Additive Manufacturing, 36, 101532.CrossRef
9.
Zurück zum Zitat Huang, R., Riddle, M. E., Graziano, D., et al. (2017). Environmental and economic implications of distributed additive manufacturing: The case of injection Mold tooling. Journal of Industrial Ecology, 21, S130–S143.CrossRef Huang, R., Riddle, M. E., Graziano, D., et al. (2017). Environmental and economic implications of distributed additive manufacturing: The case of injection Mold tooling. Journal of Industrial Ecology, 21, S130–S143.CrossRef
10.
Zurück zum Zitat Chen, D., Heyer, S., Ibbotson, S., et al. (2015). Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of Cleaner Production, 107, 615–625.CrossRef Chen, D., Heyer, S., Ibbotson, S., et al. (2015). Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of Cleaner Production, 107, 615–625.CrossRef
11.
Zurück zum Zitat Achillas, C., Aidonis, D., Iakovou, E., et al. (2015). A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory. Journal of Manufacturing Systems, 37(1), 328–339.CrossRef Achillas, C., Aidonis, D., Iakovou, E., et al. (2015). A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory. Journal of Manufacturing Systems, 37(1), 328–339.CrossRef
12.
Zurück zum Zitat Aroca, R. V., Ventura, C. E. H., Mello, I. D., & Pazelli, T. F. P. A. T. (2017). Sequential additive manufacturing: Automatic manipulation of 3D printed parts. Rapid Prototyping Journal, 23(4), 653–659.CrossRef Aroca, R. V., Ventura, C. E. H., Mello, I. D., & Pazelli, T. F. P. A. T. (2017). Sequential additive manufacturing: Automatic manipulation of 3D printed parts. Rapid Prototyping Journal, 23(4), 653–659.CrossRef
13.
Zurück zum Zitat Gurr, M., & Mülhaupt, R. (2012). Rapid prototyping. In K. Matyjaszewski & M. Möller (Eds.), Polymer science: A comprehensive reference (pp. 77–99). Amsterdam: Elsevier.CrossRef Gurr, M., & Mülhaupt, R. (2012). Rapid prototyping. In K. Matyjaszewski & M. Möller (Eds.), Polymer science: A comprehensive reference (pp. 77–99). Amsterdam: Elsevier.CrossRef
14.
Zurück zum Zitat Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., et al. (2016). Layerless fabrication with continuous liquid interface production. PNAS, 11(42), 11703–11708.CrossRef Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., et al. (2016). Layerless fabrication with continuous liquid interface production. PNAS, 11(42), 11703–11708.CrossRef
15.
Zurück zum Zitat Salonitis, K. (2014). Stereolithography. In S. Hashmi, G. F. Batalha, C. J. Van Tyne, & B. Yilbas (Eds.), Comprehensive materials processing (pp. 19–67). Amsterdam: Elsevier.CrossRef Salonitis, K. (2014). Stereolithography. In S. Hashmi, G. F. Batalha, C. J. Van Tyne, & B. Yilbas (Eds.), Comprehensive materials processing (pp. 19–67). Amsterdam: Elsevier.CrossRef
16.
Zurück zum Zitat Hafkamp, T., Baars, G. V., Jager, B. D., & Etman, P. (2017). A trade-off analysis of recoating methods for vat photopolymerization of ceramics. SFF Proceedings, 28, 687–711. Hafkamp, T., Baars, G. V., Jager, B. D., & Etman, P. (2017). A trade-off analysis of recoating methods for vat photopolymerization of ceramics. SFF Proceedings, 28, 687–711.
17.
Zurück zum Zitat Santoliquido, O., Colombo, P., & Ortona, A. (2019). Additive manufacturing of ceramic components by digital light processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 39(6), 2140–2148.CrossRef Santoliquido, O., Colombo, P., & Ortona, A. (2019). Additive manufacturing of ceramic components by digital light processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 39(6), 2140–2148.CrossRef
18.
Zurück zum Zitat Behera, D., Chizari, S., Shaw, L. A., et al. (2021). Current challenges and potential directions towards precision microscale additive manufacturing – Part II: Laser-based curing, heating, and trapping processes. Precision Engineering, 68, 301–318.CrossRef Behera, D., Chizari, S., Shaw, L. A., et al. (2021). Current challenges and potential directions towards precision microscale additive manufacturing – Part II: Laser-based curing, heating, and trapping processes. Precision Engineering, 68, 301–318.CrossRef
19.
Zurück zum Zitat Ho, J. Y., Wong, K. K., Leong, K. C., & Wong, T. N. (2017). Convective heat transfer performance of airfoil heat sinks fabricated by selective laser melting. International Journal of Thermal Sciences, 114, 213–228.CrossRef Ho, J. Y., Wong, K. K., Leong, K. C., & Wong, T. N. (2017). Convective heat transfer performance of airfoil heat sinks fabricated by selective laser melting. International Journal of Thermal Sciences, 114, 213–228.CrossRef
Metadaten
Titel
Mass Production
verfasst von
Sanjay Kumar
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-80783-2_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.