Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

Mathematical Ecology of Cancer

verfasst von : Thomas Hillen, Mark A. Lewis

Erschienen in: Managing Complexity, Reducing Perplexity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is an emerging understanding that cancer does not describe one disease, or one type of aggressive cell, but, rather, a complicated interaction of many abnormal features and many different cell types, which is situated in a heterogeneous habitat of normal tissue. Hence, as proposed by Gatenby, and Merlo et al., cancer should be seen as an ecosystem; issues such as invasion, competition, predator-prey interaction, mutation, selection, evolution and extinction play an important role in determining outcomes. It is not surprising that many methods from mathematical ecology can be adapted to the modeling of cancer. This paper is a statement about the important connections between ecology and cancer modelling. We present a brief overview about relevant similarities and then focus on three aspects; treatment and control, mutations and evolution, and invasion and metastasis. The goal is to spark curiosity and to bring together mathematical oncology and mathematical ecology to initiate cross fertilization between these fields. We believe that, in the long run, ecological methods and models will enable us to move ahead in the design of treatment to fight this devastating disease.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Alarcon, M.R. Owen, H.M. Byrne, P.K. Maini, Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Med. 7(2–3), 85–119 (2006)CrossRefMATHMathSciNet T. Alarcon, M.R. Owen, H.M. Byrne, P.K. Maini, Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Med. 7(2–3), 85–119 (2006)CrossRefMATHMathSciNet
2.
Zurück zum Zitat J.W.N. Bachman, T. Hillen, Mathematical optimization of the combination of radiation and differentiation therapies of cancer. Front Oncol (2013, free online). doi:10.3389/fonc.2013.00052 J.W.N. Bachman, T. Hillen, Mathematical optimization of the combination of radiation and differentiation therapies of cancer. Front Oncol (2013, free online). doi:10.​3389/​fonc.​2013.​00052
3.
Zurück zum Zitat R.S. Cantrell, C. Cosner, V. Hutson, Permanence in ecological systems with spatial heterogeneity. Proc. R. Soc. Edinb. 123A, 533–559 (1993)CrossRefMathSciNet R.S. Cantrell, C. Cosner, V. Hutson, Permanence in ecological systems with spatial heterogeneity. Proc. R. Soc. Edinb. 123A, 533–559 (1993)CrossRefMathSciNet
4.
Zurück zum Zitat M.A. Chaplain, S.R. McDougall, A.R.A. Anderson, Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng 8, 233–257 (2006)CrossRef M.A. Chaplain, S.R. McDougall, A.R.A. Anderson, Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng 8, 233–257 (2006)CrossRef
5.
Zurück zum Zitat T. Day, P. Taylor, Evolutionary dynamics and stability in discrete and continuous games. Evol. Ecol. Res. 5, 605–613 (2003) T. Day, P. Taylor, Evolutionary dynamics and stability in discrete and continuous games. Evol. Ecol. Res. 5, 605–613 (2003)
6.
Zurück zum Zitat U. Dieckmann, Can adaptive dynamics invade. Trends Ecol. Evol. 12, 128–131 (1997)CrossRef U. Dieckmann, Can adaptive dynamics invade. Trends Ecol. Evol. 12, 128–131 (1997)CrossRef
7.
Zurück zum Zitat O. Diekmann, M. Gyllenberg, J.A.J. Metz, H.R. Thieme, On the formulation and analysis of general deterministic structured population models. J. Math. Biol. 36, 349–388 (1998)CrossRefMATHMathSciNet O. Diekmann, M. Gyllenberg, J.A.J. Metz, H.R. Thieme, On the formulation and analysis of general deterministic structured population models. J. Math. Biol. 36, 349–388 (1998)CrossRefMATHMathSciNet
8.
Zurück zum Zitat D. Dingli, F. Michor, Successful therapy must eradicate cancer stem cells. Stem Cells 24(12), 2603–2610 (2006)CrossRef D. Dingli, F. Michor, Successful therapy must eradicate cancer stem cells. Stem Cells 24(12), 2603–2610 (2006)CrossRef
9.
Zurück zum Zitat J.M. Drake, D.M. Lodge, Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol. Invasions 8, 365–375 (2006)CrossRef J.M. Drake, D.M. Lodge, Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol. Invasions 8, 365–375 (2006)CrossRef
10.
Zurück zum Zitat H. Enderling, M. Chaplain, A. Anderson, J. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)CrossRefMathSciNet H. Enderling, M. Chaplain, A. Anderson, J. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)CrossRefMathSciNet
11.
Zurück zum Zitat H. Enderling, L. Hlatky, P. Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases. Brit. J. Cancer 100(12), 1917–1925 (2009)CrossRef H. Enderling, L. Hlatky, P. Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases. Brit. J. Cancer 100(12), 1917–1925 (2009)CrossRef
12.
Zurück zum Zitat R.S. Epanchin-Niell, A. Hastings, Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010)CrossRef R.S. Epanchin-Niell, A. Hastings, Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010)CrossRef
13.
Zurück zum Zitat W.F. Fagan, M.A. Lewis, M.G. Neubert, P. van den Driessche, Invasion theory and biological control. Ecol. Lett. 5, 148–157 (2002)CrossRef W.F. Fagan, M.A. Lewis, M.G. Neubert, P. van den Driessche, Invasion theory and biological control. Ecol. Lett. 5, 148–157 (2002)CrossRef
14.
Zurück zum Zitat R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. Lond. 37, 355–369 (1937)CrossRef R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. Lond. 37, 355–369 (1937)CrossRef
15.
Zurück zum Zitat N.S. Forbes, Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010)CrossRef N.S. Forbes, Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010)CrossRef
16.
Zurück zum Zitat P. Friedl, E.B. Bröcker, The biology of cell locomotion within three dimensional extracellular matrix. Cell Motil. Life Sci. 57, 41–64 (2000)CrossRef P. Friedl, E.B. Bröcker, The biology of cell locomotion within three dimensional extracellular matrix. Cell Motil. Life Sci. 57, 41–64 (2000)CrossRef
17.
Zurück zum Zitat P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. 3, 362–374 (2003)CrossRef P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. 3, 362–374 (2003)CrossRef
18.
Zurück zum Zitat R.A. Gatenby, J. Brown, T. Vincent, Lessons from applied ecology: cancer control using a evolutionary double bind. Perspect. Cancer Res. 69(19), 0F1–4 (2009) R.A. Gatenby, J. Brown, T. Vincent, Lessons from applied ecology: cancer control using a evolutionary double bind. Perspect. Cancer Res. 69(19), 0F1–4 (2009)
19.
Zurück zum Zitat R.A. Gatenby, R.J. Gillies, A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8(1), 56–61 (2008)CrossRef R.A. Gatenby, R.J. Gillies, A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8(1), 56–61 (2008)CrossRef
20.
Zurück zum Zitat R.A. Gatenby, R.J. Gillies, Of cancer and cavefish. Nat. Rev. Cancer 11, 237–238 (2011)CrossRef R.A. Gatenby, R.J. Gillies, Of cancer and cavefish. Nat. Rev. Cancer 11, 237–238 (2011)CrossRef
21.
Zurück zum Zitat J. Gong, Tumor control probability models. Ph.D. thesis, University of Alberta, Canada (2011) J. Gong, Tumor control probability models. Ph.D. thesis, University of Alberta, Canada (2011)
22.
Zurück zum Zitat J. Gong, M. dos Santos, C. Finlay, T. Hillen, Are more complicated tumor control probability models better? Math. Med. Biol. 19 (2011). doi:10.1093/imammb/dqr023. Accessed 17, Oct 2011 J. Gong, M. dos Santos, C. Finlay, T. Hillen, Are more complicated tumor control probability models better? Math. Med. Biol. 19 (2011). doi:10.​1093/​imammb/​dqr023. Accessed 17, Oct 2011
23.
Zurück zum Zitat D. Hanahan, R. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)CrossRef D. Hanahan, R. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)CrossRef
24.
Zurück zum Zitat D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)CrossRef D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)CrossRef
25.
Zurück zum Zitat L.G. Hanin, A stochastic model of tumor response to fractionated radiation: limit theorems and rate of convergence. Math. Biosci. 91(1), 1–17 (2004)CrossRefMathSciNet L.G. Hanin, A stochastic model of tumor response to fractionated radiation: limit theorems and rate of convergence. Math. Biosci. 91(1), 1–17 (2004)CrossRefMathSciNet
26.
27.
Zurück zum Zitat M.P. Hassell, The dynamics of arthropod predator-prey systems (Princeton University Press, Princeton, 1978)MATH M.P. Hassell, The dynamics of arthropod predator-prey systems (Princeton University Press, Princeton, 1978)MATH
28.
Zurück zum Zitat A. Hastings, Models of spatial spread: is the theory compete? Ecology 77(6), 1675–1679 (1996) A. Hastings, Models of spatial spread: is the theory compete? Ecology 77(6), 1675–1679 (1996)
29.
Zurück zum Zitat H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch, Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl. 59, 2326–2339 (2010)CrossRefMATHMathSciNet H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch, Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl. 59, 2326–2339 (2010)CrossRefMATHMathSciNet
30.
31.
Zurück zum Zitat T. Hillen, G. de Vries, J. Gong, C. Finlay, From cell population models to tumour control probability: including cell cycle effects. Acta Oncol. 49, 1315–1323 (2010) T. Hillen, G. de Vries, J. Gong, C. Finlay, From cell population models to tumour control probability: including cell cycle effects. Acta Oncol. 49, 1315–1323 (2010)
32.
Zurück zum Zitat T. Hillen, H. Enderling, P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math Biol. 75(1), 161–184 (2013) T. Hillen, H. Enderling, P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math Biol. 75(1), 161–184 (2013)
33.
Zurück zum Zitat T. Hillen, K. Painter, in Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, ed. by M. Lewis, P. Maini, S. Petrovskii. Transport and Anisotropic Diffusion Models for Movement in Oriented Habitats (Springer, Heidelberg, 2012), p. 46 T. Hillen, K. Painter, in Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, ed. by M. Lewis, P. Maini, S. Petrovskii. Transport and Anisotropic Diffusion Models for Movement in Oriented Habitats (Springer, Heidelberg, 2012), p. 46
34.
Zurück zum Zitat J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems. London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1988) J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems. London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1988)
35.
Zurück zum Zitat Y. Iwasa, M.A. Nowak, F. Michor, Evolution of resistance during clonal expansion. Genetics 172, 2557–2566 (2006)CrossRef Y. Iwasa, M.A. Nowak, F. Michor, Evolution of resistance during clonal expansion. Genetics 172, 2557–2566 (2006)CrossRef
36.
Zurück zum Zitat A. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K.R. Swanson, M. Pelegrini-Issac, R. Guillevin, H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn. Reson. Med. 54, 616–624 (2005) A. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K.R. Swanson, M. Pelegrini-Issac, R. Guillevin, H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn. Reson. Med. 54, 616–624 (2005)
37.
Zurück zum Zitat W.S. Kendal, A closed-form description of tumour control with fractionated radiotherapy and repopulation. Int. J. Radiat. Biol. 73(2), 207–210 (1998)CrossRef W.S. Kendal, A closed-form description of tumour control with fractionated radiotherapy and repopulation. Int. J. Radiat. Biol. 73(2), 207–210 (1998)CrossRef
38.
Zurück zum Zitat N.L. Komarova, D. Wodarz, Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102, 9714–9719 (2005) N.L. Komarova, D. Wodarz, Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102, 9714–9719 (2005)
39.
Zurück zum Zitat E. Konukoglu, O. Clatz, P.Y. Bondiau, H. Delignette, N. Ayache, Extrapolation glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med. Image Anal. 14, 111–125 (2010)CrossRef E. Konukoglu, O. Clatz, P.Y. Bondiau, H. Delignette, N. Ayache, Extrapolation glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med. Image Anal. 14, 111–125 (2010)CrossRef
40.
Zurück zum Zitat M. Kot, M.A. Lewis, P. van den Driessche, Dispersal data and the spread of invading organisms. Ecology 77(7), 2027–2042 (1996)CrossRef M. Kot, M.A. Lewis, P. van den Driessche, Dispersal data and the spread of invading organisms. Ecology 77(7), 2027–2042 (1996)CrossRef
41.
Zurück zum Zitat S. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models (Chapman Hall/CRC Press, London, 2007)MATH S. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models (Chapman Hall/CRC Press, London, 2007)MATH
42.
Zurück zum Zitat S.A. Levin, The problem of pattern and scale in ecology. Ecology 73(6), 1943–1967 (1992)CrossRef S.A. Levin, The problem of pattern and scale in ecology. Ecology 73(6), 1943–1967 (1992)CrossRef
43.
45.
Zurück zum Zitat H.W. McKenzie, E.H. Merrill, R.J. Spiteri, M.A. Lewis, Linear features affect predator search time; implications for the functional response. Roy. Soc. Interface Focus 2, 205–216 (2012)CrossRef H.W. McKenzie, E.H. Merrill, R.J. Spiteri, M.A. Lewis, Linear features affect predator search time; implications for the functional response. Roy. Soc. Interface Focus 2, 205–216 (2012)CrossRef
46.
Zurück zum Zitat L. Merlo, J. Pepper, B. Reid, C. Maley, Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006)CrossRef L. Merlo, J. Pepper, B. Reid, C. Maley, Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006)CrossRef
47.
Zurück zum Zitat F. Mollica, L. Preziosi, and K.R. Rajagopal, (eds.), Modelling of Biological Material (Birkhauser, New York, 2007) F. Mollica, L. Preziosi, and K.R. Rajagopal, (eds.), Modelling of Biological Material (Birkhauser, New York, 2007)
48.
Zurück zum Zitat W.F. Morris, D.F. Doak, Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (Sinauer Associates Inc., Sunderland, 2002) W.F. Morris, D.F. Doak, Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (Sinauer Associates Inc., Sunderland, 2002)
49.
Zurück zum Zitat J.D. Nagy, The ecology and evolutionary biology of cancer: a review of mathematical models for necrosis and tumor cell diversity. Math. Biosci. Eng. 2(2), 381–418 (2005)CrossRefMathSciNet J.D. Nagy, The ecology and evolutionary biology of cancer: a review of mathematical models for necrosis and tumor cell diversity. Math. Biosci. Eng. 2(2), 381–418 (2005)CrossRefMathSciNet
50.
Zurück zum Zitat M.G. Neubert, H. Caswell, Demography and dispersal: calculation and sensitivity analysis of invasion speed for stage-structured populations. Ecology 81, 1613–1628 (2000)CrossRef M.G. Neubert, H. Caswell, Demography and dispersal: calculation and sensitivity analysis of invasion speed for stage-structured populations. Ecology 81, 1613–1628 (2000)CrossRef
52.
Zurück zum Zitat K.J. Painter, Modelling migration strategies in the extracellular matrix. J. Math. Biol. 58, 511–543 (2009)CrossRefMathSciNet K.J. Painter, Modelling migration strategies in the extracellular matrix. J. Math. Biol. 58, 511–543 (2009)CrossRefMathSciNet
53.
Zurück zum Zitat K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: the use of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion (2012) (submitted) K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: the use of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion (2012) (submitted)
54.
Zurück zum Zitat A.B. Potapov, M.A. Lewis, D.C. Finnoff, Optimal control of biological invasions in lake networkds. Nat. Resour. Model. 20, 351–380 (2007)CrossRefMATHMathSciNet A.B. Potapov, M.A. Lewis, D.C. Finnoff, Optimal control of biological invasions in lake networkds. Nat. Resour. Model. 20, 351–380 (2007)CrossRefMATHMathSciNet
55.
Zurück zum Zitat L. Preziosi (ed.), Cancer Modelling and Simulation (Chapman Hall/CRC Press, Boca Raton, 2003) L. Preziosi (ed.), Cancer Modelling and Simulation (Chapman Hall/CRC Press, Boca Raton, 2003)
56.
Zurück zum Zitat K.A. Rejniak, A.R.A. Anderson, Hybrid models of tumor growth. WIREs Syst. Biol. Med. 3, 115–125 (2011)CrossRef K.A. Rejniak, A.R.A. Anderson, Hybrid models of tumor growth. WIREs Syst. Biol. Med. 3, 115–125 (2011)CrossRef
57.
Zurück zum Zitat E. Renshaw, Modelling Biological Populations in Space and Time (Cambridge University Press, Cambridge, 1991)CrossRefMATH E. Renshaw, Modelling Biological Populations in Space and Time (Cambridge University Press, Cambridge, 1991)CrossRefMATH
58.
Zurück zum Zitat N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice (Oxford University Press, Oxford, 1997) N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice (Oxford University Press, Oxford, 1997)
60.
Zurück zum Zitat H. Smith, The Theory of the Chemostat (Cambridge University Press, Cambridge, 1995) H. Smith, The Theory of the Chemostat (Cambridge University Press, Cambridge, 1995)
61.
Zurück zum Zitat N.A. Stavreva, P.V. Stavrev, B. Warkentin, B.G. Fallone, Investigating the effect of cell repopulation on the tumor response to fractionated external radiotherapy. Med. Phys. 30(5), 735–742 (2003)CrossRef N.A. Stavreva, P.V. Stavrev, B. Warkentin, B.G. Fallone, Investigating the effect of cell repopulation on the tumor response to fractionated external radiotherapy. Med. Phys. 30(5), 735–742 (2003)CrossRef
62.
Zurück zum Zitat K.R. Swanson, C. Bridge, J.D. Murray, E.C. Jr Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 110 (2003) K.R. Swanson, C. Bridge, J.D. Murray, E.C. Jr Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 110 (2003)
63.
Zurück zum Zitat T.E. Weldon, Mathematical Models in Cancer Research (Adam Hilger, Philadelphia, 1988) T.E. Weldon, Mathematical Models in Cancer Research (Adam Hilger, Philadelphia, 1988)
64.
Zurück zum Zitat S.M. Wise, J.A. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth—I. J. Theor. Biol. 253, 524–543 (2008)CrossRefMathSciNet S.M. Wise, J.A. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth—I. J. Theor. Biol. 253, 524–543 (2008)CrossRefMathSciNet
65.
Zurück zum Zitat H. Youssefpour, X. Li, A.D. Lander, J.S. Lowengrub, Multispecies model of cell lineages and feedback control in solid tumors. J. Theor. Biol. 304, 39–59 (2012) H. Youssefpour, X. Li, A.D. Lander, J.S. Lowengrub, Multispecies model of cell lineages and feedback control in solid tumors. J. Theor. Biol. 304, 39–59 (2012)
66.
Zurück zum Zitat M. Zaider, G.N. Minerbo, Tumor control probability: a formulation applicable to any temporal protocol of dose delivery. Phys. Med. Biol. 45, 279–293 (2000)CrossRef M. Zaider, G.N. Minerbo, Tumor control probability: a formulation applicable to any temporal protocol of dose delivery. Phys. Med. Biol. 45, 279–293 (2000)CrossRef
Metadaten
Titel
Mathematical Ecology of Cancer
verfasst von
Thomas Hillen
Mark A. Lewis
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-03759-2_1