Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 5/2023

01.10.2023

Mathematical Model of a Two-Temperature Medium of Gas–Solid Nanoparticles with Laser Methane Pyrolysis

verfasst von: V. N. Snytnikov, E. E. Peskova, O. P. Stoyanovskaya

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model of a two-phase chemically active medium of gas and solid ultrafine particles in the field of laser radiation with detailed heat transfer processes between the gas and particles is created. The mathematical model is a system of Navier–Stokes equations in the approximation of small Mach numbers and several temperatures, which describes the dynamics of a viscous multicomponent heat-conducting medium with diffusion, chemical reactions, and energy supply through laser radiation. A computational algorithm is developed for studying chemical processes in a gas–dust medium with the single-velocity dynamics of a multicomponent gas under the laser radiation. This mathematical model multiscale, i.e., is characterized by the presence of several very different temporal and spatial scales. The computational algorithm is based on the scheme of splitting by physical processes. For a two-phase medium of a multicomponent gas and nanodispersed solid particles, theoretical studies of multidirectional processes of thermal relaxation and specific heating-cooling of the components of a two-phase medium by laser radiation, thermal effects of chemical reactions, and intrinsic radiation particles are carried out. It is shown that laser radiation can form a significant gap between the particle temperature and the gas temperature and provide the activation of methane with conversion to ethylene and hydrogen. The developed numerical model will find its application in the creation of new technologies of laser thermochemistry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In addition to the asymptotic approximation or short-time approximation, asymptotic-preserving methods have been developed for the numerical solution of problems with rigid relaxation terms. These methods have shown their effectiveness for problems with small and multiscale parameters. A review of such methods can be found, for example, in [23, 24].
 
Literatur
6.
Zurück zum Zitat R. I. Nigmatulin, Dynamics of Multiphase Media, Vol. 1 (Nauka, Moscow, 1987; Hemisphere, New York, 1990). R. I. Nigmatulin, Dynamics of Multiphase Media, Vol. 1 (Nauka, Moscow, 1987; Hemisphere, New York, 1990).
7.
Zurück zum Zitat D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (Academic, Boston, 1994).MATH D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (Academic, Boston, 1994).MATH
11.
Zurück zum Zitat E. V. Gurentsov, A. V. Eremin, and M. G. Falchenko, “Modelling of heat transfer processes of laser heated nanoparticles with gas environment,” Fiz.-Khim. Kinet. Gazov. Din. 11 (2011). http://chemphys.edu.ru/issues/2011-11/articles/168/ E. V. Gurentsov, A. V. Eremin, and M. G. Falchenko, “Modelling of heat transfer processes of laser heated nanoparticles with gas environment,” Fiz.-Khim. Kinet. Gazov. Din. 11 (2011). http://​chemphys.​edu.​ru/​issues/​2011-11/​articles/​168/​
12.
Zurück zum Zitat R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, and V. F. Tishkin, “Modeling the flow of a multicomponent reactive gas using high accuracy algorithms,” Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki 27, 608–617 (2017).MathSciNetCrossRef R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, and V. F. Tishkin, “Modeling the flow of a multicomponent reactive gas using high accuracy algorithms,” Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki 27, 608–617 (2017).MathSciNetCrossRef
19.
Zurück zum Zitat A. I. Kostyukov, N. A. Zaitseva, M. G. Baronskiy, A. A. Nashivochnikov, and V. N. Snytnikov, “Catalytic activity of laser-synthesized CrOx /Al2O3 nanocatalysts with different particle sizes in isobutane dehydrogenation,” J. Nanopart. Res. 24, 144, 1–13 (2022). https://doi.org/10.1007/s11051-022-05532-1 A. I. Kostyukov, N. A. Zaitseva, M. G. Baronskiy, A. A. Nashivochnikov, and V. N. Snytnikov, “Catalytic activity of laser-synthesized CrOx /Al2O3 nanocatalysts with different particle sizes in isobutane dehydrogenation,” J. Nanopart. Res. 24, 144, 1–13 (2022). https://​doi.​org/​10.​1007/​s11051-022-05532-1
24.
Zurück zum Zitat O. Stoyanovskaya, M. Davydov, M. Arendarenko, E. Isaenko, T. Markelova, and V. Snytnikov, “Fast method to simulate dynamics of two-phase medium with intense interaction between phases by smoothed particle hydrodynamics: Gas–dust mixture with polydisperse particles, linear drag, one-dimensional tests,” J. Comput. Phys. 430, 110035, 1–24 (2021). https://doi.org/10.1016/j.jcp.2020.110035MathSciNetCrossRefMATH O. Stoyanovskaya, M. Davydov, M. Arendarenko, E. Isaenko, T. Markelova, and V. Snytnikov, “Fast method to simulate dynamics of two-phase medium with intense interaction between phases by smoothed particle hydrodynamics: Gas–dust mixture with polydisperse particles, linear drag, one-dimensional tests,” J. Comput. Phys. 430, 110035, 1–24 (2021). https://​doi.​org/​10.​1016/​j.​jcp.​2020.​110035MathSciNetCrossRefMATH
Metadaten
Titel
Mathematical Model of a Two-Temperature Medium of Gas–Solid Nanoparticles with Laser Methane Pyrolysis
verfasst von
V. N. Snytnikov
E. E. Peskova
O. P. Stoyanovskaya
Publikationsdatum
01.10.2023
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 5/2023
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048223050095

Weitere Artikel der Ausgabe 5/2023

Mathematical Models and Computer Simulations 5/2023 Zur Ausgabe

Premium Partner