Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2017

08.07.2017

Mathematical Model of Bone Regeneration in a Porous Implant

verfasst von: L. B. Maslov

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model of the reparative regeneration of bone tissue governed by the law of cell differentiation and action of an external periodic mechanical loading is presented. The model allows one to study the recovery processes of injured human locomotor system elements under a dynamic loading and to theoretically substantiate the choice of an optimum periodic impact on the defective tissues for their fastest and steady healing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Pauwels, “A new theory concerning the influence of mechanical stimuli on the differentiation of the supporting tissue,” Eds. P. Maquet and R. Furlong. Biomechanics of the Locomotor Apparatus, Springer-Verlag, Berlin, 375-407 (1980).CrossRef F. Pauwels, “A new theory concerning the influence of mechanical stimuli on the differentiation of the supporting tissue,” Eds. P. Maquet and R. Furlong. Biomechanics of the Locomotor Apparatus, Springer-Verlag, Berlin, 375-407 (1980).CrossRef
2.
Zurück zum Zitat D. R. Carter, “Mechanical loading history and skeletal biology,” J. Biomech., 20, 1095-1109 (1987).CrossRef D. R. Carter, “Mechanical loading history and skeletal biology,” J. Biomech., 20, 1095-1109 (1987).CrossRef
3.
Zurück zum Zitat D. R. Carter, G. S. Beaupre, N. J. Giori, and J. A. Helms, “Mechanobiology of skeletal regeneration,” Clin. Orthop., No. 355, S41-S55 (1998). D. R. Carter, G. S. Beaupre, N. J. Giori, and J. A. Helms, “Mechanobiology of skeletal regeneration,” Clin. Orthop., No. 355, S41-S55 (1998).
4.
Zurück zum Zitat N. J. Giori, L. Ryd, and D. R. Carter, “Mechanical influence on tissue differentiation at bone-cement interfaces,” J. Arthroplasty., 10, 514-522 (1995).CrossRef N. J. Giori, L. Ryd, and D. R. Carter, “Mechanical influence on tissue differentiation at bone-cement interfaces,” J. Arthroplasty., 10, 514-522 (1995).CrossRef
5.
Zurück zum Zitat R. Huiskes , W. D. van Driel, P. J. Prendergast, and K. Soballe, “A biomechanical model for periprosthetic fibrous-tissue differentiation,” J. Mat. Sci., Materials in Medicine, 8, 785-788 (1997).CrossRef R. Huiskes , W. D. van Driel, P. J. Prendergast, and K. Soballe, “A biomechanical model for periprosthetic fibrous-tissue differentiation,” J. Mat. Sci., Materials in Medicine, 8, 785-788 (1997).CrossRef
6.
Zurück zum Zitat P. J. Prendergast, R. Huiskes, and K. Soballe, “Biophysical stimuli on cells during tissue differentiation at implant interfaces,” J. Biomech., 30, No. 6, 539-548 (1997).CrossRef P. J. Prendergast, R. Huiskes, and K. Soballe, “Biophysical stimuli on cells during tissue differentiation at implant interfaces,” J. Biomech., 30, No. 6, 539-548 (1997).CrossRef
7.
Zurück zum Zitat D. Lacroix and P. J. Prendergast, “A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading,” J. Biomech., 35, No. 8, 1163-1171 (2002).CrossRef D. Lacroix and P. J. Prendergast, “A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading,” J. Biomech., 35, No. 8, 1163-1171 (2002).CrossRef
8.
Zurück zum Zitat A. E. Goodship, T. J. Lawes, and C. T. Rubin, “Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: Preliminary evidence of efficacy,” J. Orthop. Res., 27, No. 7, 922-930 (2009).CrossRef A. E. Goodship, T. J. Lawes, and C. T. Rubin, “Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: Preliminary evidence of efficacy,” J. Orthop. Res., 27, No. 7, 922-930 (2009).CrossRef
9.
Zurück zum Zitat L. B. Maslov, “Mathematical model of the bone structural transformation,” Rus. J. Biomech., (17, No. 2, 32-54 2013). L. B. Maslov, “Mathematical model of the bone structural transformation,” Rus. J. Biomech., (17, No. 2, 32-54 2013).
10.
Zurück zum Zitat L. B. Maslov, “Mathematical modeling of the callus mechanical properties restoration,” J. Appl. Math. Mech., 79, No. 2, 195-206 (2015).CrossRef L. B. Maslov, “Mathematical modeling of the callus mechanical properties restoration,” J. Appl. Math. Mech., 79, No. 2, 195-206 (2015).CrossRef
11.
Zurück zum Zitat D. P. Byrne, D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast, “Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering,” Biomaterials, 28, 5544-5554 (2007).CrossRef D. P. Byrne, D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast, “Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering,” Biomaterials, 28, 5544-5554 (2007).CrossRef
12.
Zurück zum Zitat D. Lacroix, J. A. Planell, and P. J. Prendergast, “Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering,” Phil. Trans. R. Soc. A., 367, 1993-2009 (2009).CrossRef D. Lacroix, J. A. Planell, and P. J. Prendergast, “Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering,” Phil. Trans. R. Soc. A., 367, 1993-2009 (2009).CrossRef
13.
Zurück zum Zitat M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid, part I: low frequency range,” J. Acoust. Soc. Am., 28, No. 2, 168-178 (1956).CrossRef M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid, part I: low frequency range,” J. Acoust. Soc. Am., 28, No. 2, 168-178 (1956).CrossRef
14.
Zurück zum Zitat L. B. Maslov, “Study of vibration characteristics of poroelastic mechanical systems,” Mech. Solids, 47, No. 2, 221-233 (2012).CrossRef L. B. Maslov, “Study of vibration characteristics of poroelastic mechanical systems,” Mech. Solids, 47, No. 2, 221-233 (2012).CrossRef
15.
Zurück zum Zitat D. G. Arsen’ev, A. V. Zinkovskii, and L. B. Maslov, “Effective elastic characteristics of an anisotropic model of porous biomaterials saturated with a liquid,” Sci. and Techn. Bulletins SPbGPU, 59, No. 3, 230-236 (2008). D. G. Arsen’ev, A. V. Zinkovskii, and L. B. Maslov, “Effective elastic characteristics of an anisotropic model of porous biomaterials saturated with a liquid,” Sci. and Techn. Bulletins SPbGPU, 59, No. 3, 230-236 (2008).
16.
Zurück zum Zitat K. B. Ustinov, “On determination of effective elastic characteristics of two-phase media. The case of isolated homogeneities in the form of ellipsoids of revolution,” Advances in Mechanics, No. 2, 126-168 (2003). K. B. Ustinov, “On determination of effective elastic characteristics of two-phase media. The case of isolated homogeneities in the form of ellipsoids of revolution,” Advances in Mechanics, No. 2, 126-168 (2003).
17.
Zurück zum Zitat I. Sevostianov, N. Yilmaz, V. Kushch, and V. Levin, “Effective elastic properties of matrix composites with transversely-isotropic phases,” Int. J. Sol. Struct., 42, No. 2, 455-476 (2005).CrossRef I. Sevostianov, N. Yilmaz, V. Kushch, and V. Levin, “Effective elastic properties of matrix composites with transversely-isotropic phases,” Int. J. Sol. Struct., 42, No. 2, 455-476 (2005).CrossRef
18.
Zurück zum Zitat L. Dormieux, A. Molinari, and D. Kondo, “Micromechanical approach to the behavior of poroelastic materials,” J. Mech. Phys. Solids, 50, No. 10, 2203–2231 (2002).CrossRef L. Dormieux, A. Molinari, and D. Kondo, “Micromechanical approach to the behavior of poroelastic materials,” J. Mech. Phys. Solids, 50, No. 10, 2203–2231 (2002).CrossRef
19.
Zurück zum Zitat L. Dormieux, D.Kondo, and F. J. Ulm, Microporomechanics, Wiley, New York (2006).CrossRef L. Dormieux, D.Kondo, and F. J. Ulm, Microporomechanics, Wiley, New York (2006).CrossRef
20.
Zurück zum Zitat O. Coussy, Poromechanics, Wiley, New York (2004). O. Coussy, Poromechanics, Wiley, New York (2004).
21.
Zurück zum Zitat L. B. Maslov, “A parametric investigation of the harmonic vibrations of a poroelastic rod,” J. Appl. Math. Mech., 75, No. 1, 41-48 (2011).CrossRef L. B. Maslov, “A parametric investigation of the harmonic vibrations of a poroelastic rod,” J. Appl. Math. Mech., 75, No. 1, 41-48 (2011).CrossRef
22.
Zurück zum Zitat V. A. Aksel’rud and V. M. Lysyanskii, Extraction (Solid-Liquid System) [in Russian], Khimiya, Leningrad (1974). V. A. Aksel’rud and V. M. Lysyanskii, Extraction (Solid-Liquid System) [in Russian], Khimiya, Leningrad (1974).
23.
Zurück zum Zitat Computer program for calculating a one-dimensional model of bone tissue regeneration during reconstruction with porous implants: Prog. EVM 2016611834 Russian Federation / L. B. Maslov; The applicant L. B. Maslov; Copyright holder FGBOU VPO “V. I. Lenin Ivanovo State Energetics University (IGPU), No. 2015662544; Appl. 17.12.15; Registered in the Program Registry for EVM 11.02.16. Computer program for calculating a one-dimensional model of bone tissue regeneration during reconstruction with porous implants: Prog. EVM 2016611834 Russian Federation / L. B. Maslov; The applicant L. B. Maslov; Copyright holder FGBOU VPO “V. I. Lenin Ivanovo State Energetics University (IGPU), No. 2015662544; Appl. 17.12.15; Registered in the Program Registry for EVM 11.02.16.
24.
Zurück zum Zitat A. Rapacz-Kmita , A. Ślósarczyk, and Z. Paszkiewiczet, “Mechanical properties of HAp–ZrO2 composites,” J. Eur. Ceram. Soc., 26, 1481-1488 (2006).CrossRef A. Rapacz-Kmita , A. Ślósarczyk, and Z. Paszkiewiczet, “Mechanical properties of HAp–ZrO2 composites,” J. Eur. Ceram. Soc., 26, 1481-1488 (2006).CrossRef
25.
Zurück zum Zitat H. Isaksson, van C. C. Donkelaar, R. Huiskes, and K. Ito, “A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity,” J. Theor. Biology, 252, 230-246 (2008). H. Isaksson, van C. C. Donkelaar, R. Huiskes, and K. Ito, “A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity,” J. Theor. Biology, 252, 230-246 (2008).
26.
Zurück zum Zitat L. B. Maslov, D. I. Korovin, I. V. Kirpichev, and N. G. Tomin, “Application of mathematical modeling for the analysis of regeneration of bone tissue in mechanoregulation conditions,” Khirurgia Tazobedr. Sust., No. 1, 73-74 (2016). L. B. Maslov, D. I. Korovin, I. V. Kirpichev, and N. G. Tomin, “Application of mathematical modeling for the analysis of regeneration of bone tissue in mechanoregulation conditions,” Khirurgia Tazobedr. Sust., No. 1, 73-74 (2016).
Metadaten
Titel
Mathematical Model of Bone Regeneration in a Porous Implant
verfasst von
L. B. Maslov
Publikationsdatum
08.07.2017
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2017
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9671-y

Weitere Artikel der Ausgabe 3/2017

Mechanics of Composite Materials 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.